About this Специализация
Только онлайн-курсы

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.
Гибкий график

Гибкий график

Установите гибкие сроки сдачи заданий.
Промежуточный уровень

Промежуточный уровень

Часов на завершение

Прибл. 4 месяца на выполнение

Около 3 ч/неделю
Доступные языки

Русский

Субтитры: Русский...
Только онлайн-курсы

Только онлайн-курсы

Начните сейчас и учитесь по собственному графику.
Гибкий график

Гибкий график

Установите гибкие сроки сдачи заданий.
Промежуточный уровень

Промежуточный уровень

Часов на завершение

Прибл. 4 месяца на выполнение

Около 3 ч/неделю
Доступные языки

Русский

Субтитры: Русский...

How the Специализация Works

Пройти курсы

Специализация Coursera — это серия курсов, помогающих в совершенстве овладеть определенным навыком. Можно сразу записаться на специализацию или просмотреть курсы, из которых она состоит и выбрать тот, с которого вы хотите начать. Подписываясь на курс, который входит в специализацию, вы автоматически подписываетесь на всю специализацию. Можно завершить всего один курс, а потом сделать паузу в обучении или в любой момент отменить подписку. Отслеживайте свои курсы и прогресс на панели управления учащегося.

Практический проект

В каждой специализации есть практический проект, который нужно успешно выполнить, чтобы завершить специализацию и получить сертификат. Если для практического проекта в специализации предусмотрен отдельный курс, прежде чем начать его, необходимо завершить все остальные курсы.

Получите сертификат

Когда вы пройдете все курсы и завершите практический проект, вы получите сертификат, которым можно поделиться с потенциальными работодателями и коллегами.

how it works

Специализация включает несколько курсов: 4

Курс1

Введение в данные

4.6
Оценки: 70
Рецензии: 10
Этот курс - первый в специализации "Анализ данных". Курс будет особенно полезен тем, кто имеет небольшой опыт работы с данными, или хочет освежить знания по теории вероятностей, математической статистике и типах данных. Сначала мы вспомним основы теории вероятностей и поговорим о случайных величинах и их свойствах, об основных распределениях случайных величин. Затем перейдем к основным характеристикам распределений: мерам центра и мерам вариативности. Далее обсудим основные типы шкал измерения признаков, а также основные ограничения, которые тип шкалы накладывает на применимые методы анализа данных. Третья неделя курса посвящена графическому анализу данных и способам визуализации распределений, индивидуальных или совместных. Завершающий модуль курса посвящен выборкам и способам их формирования, а также принципам и инструментам работы с пропущенными и неопределенными значениями. Вы сможете применить полученные знания, выполнив небольшой проект на реальных данных, предоставленных компанией 2GIS. Присоединяйтесь!...
Курс2

Исследование статистических взаимосвязей

4.5
Оценки: 31
Рецензии: 3
Курс рассматривает способы и инструменты исследования статистических взаимосвязей между признаками. Вы научитесь оценивать, связаны ли признаки, а также делать обоснованные выводы о том, значима ли эта связь статистически. Связаны ли богатство и счастье, как связана потребительская активность людей с днем недели, способствует ли наличие аккаунта в социальных сетях популярности корпоративного сайта? На вопросы такого рода вы сможете ответить, пройдя этот курс. В первом модуле курса мы поговорим о статистических гипотезах, о способах их проверки и об основных статистических критериях, которые для этого разработаны. После этого мы рассмотрим практические инструменты выявления статистических взаимосвязей признаков, измеренных разными типами шкал, а также способы оценки значимости этих связей. Мы поговорим об основных коэффициентах взаимосвязи признаков, о том, как правильно выбрать коэффициент для решения конкретной задачи и покажем, как рассчитывать коэффициенты связи в статистических пакетах. В заключении мы подробно рассмотрим модель линейной регрессии, которая позволяет не только выявлять взаимосвязи между признаками, но и строить прогноз, и попрактикуемся в её построении....
Курс3

Сравнение и создание групп

4.1
Оценки: 17
Рецензии: 3
Курс посвящен статистическому сравнению характеристик групп и категорий. В первой части курса мы рассказываем о параметрических и непараметрических тестах сравнения средних и распределений, какие возможности и ограничения связаны с разными методами сравнения групп, говорим о сравнении связанных и несвязанных выборок. Различаются ли регионы (или аудитории) по доходу или возрасту? Как отличается пользовательская активность в разные времена года? Случайны различия между группами или закономерны? Курс научит искать ответы на такие вопросы. Вторая половина курсов посвящена выделению групп на основе эмпирических данных. Есть ли структура в данных? Можно ли говорить о том, что люди, компании или университеты группируются в отличительные, узнаваемые классы? Как найти и охарактеризовать такие группы? Мы покажем основные алгоритмы кластеризации, которые позволяют решать такие задачи. В практических видео курса мы покажем реализацию основных инструментов сравнения и выделения групп, а также предложим практические задачи и задания для отработки полученных навыков....
Курс4

Тренды и классификации

4.4
Оценки: 18
Рецензии: 3
В этом курсе мы поговорим о трендах и классификаторах. Анализ трендов помогает ответить на вопросы вроде: растут ли продажи, увеличивается ли количество пользователей сервиса? Если есть рост, то случайность это или закономерность? Есть ли в данных сезонные колебания? Как выделить тренд и как объяснить его? Также мы поговорим о факторном анализе, который позволяет найти скрытую переменную (или переменные), направляющие проявление множества видимых признаков. Как найти такие скрытые переменные и понять, что за ними стоит? В заключительной части курса поговорим о классификаторах, применение которых решает задачи отнесения объектов к тому или иному классу с определенной вероятностью, а также позволяет прогнозировать попадание нового объекта в определенный класс. Как предсказать исход события, зная основные характеристики действующего лица? Закончит ли слушатель курс, отдаст ли заемщик кредит? Как оценить точность прогноза и минимизировать ошибки? Мы разберемся с устройством обозначенных методов анализа данных и попрактикуемся в их применении....

Преподавателя

Avatar

Ольга Ечевская

доцент, кандидат социологических наук
Кафедра общей социологии ЭФ НГУ
Avatar

Наталья Галанова

Специалист по анализу данных
Компания 2GIS
Avatar

Виктор Дёмин

Специалист по анализу данных, кандидат технических наук
Компания 2GIS

Партнеры курса

Industry Partner Logo #0

О Novosibirsk State University

Novosibirsk State University (NSU) is a research university located in Novosibirsk Akademgorodok, the world-famous scientific center in Siberia. 80% of NSU teachers are active researchers affiliated with the Russian Academy of Sciences; therefore education is closely linked to world-class science: our students get first-hand knowledge about scientific discoveries before they are published. Nearly 6000 students (including international students from 37 countries) are enrolled at undergraduate and graduate programs offered by 13 departments. The leading areas of NSU expertise are natural sciences, life sciences, physics, math, IT, and more....

Часто задаваемые вопросы

  • Да! Чтобы начать, нажмите карточку интересующего вас курса и зарегистрируйтесь. Зарегистрировавшись, вы можете пройти курс и получить сертификат, ссылкой на который можно делиться с другими людьми. Просто ознакомиться с содержанием курса можно бесплатно. При подписке на курс, входящий в специализацию, вы автоматически подписываетесь на всю специализацию. Ход учебы можно отслеживать в панели управления учащегося.

  • Это полностью дистанционный курс, потому вам не нужно ничего посещать. Все лекции, материалы для самостоятельного изучения и задания доступны всегда и везде по Интернету и с мобильных устройств.

  • Эта специализация не приравнивается к зачету в университетах, однако некоторые вузы принимают сертификаты на свое усмотрение. Дополнительную информацию уточняйте в своем деканате.

  • Пройдя специализацию полностью, вы освоите набор основных навыков статистического анализа данных и сможете решать аналитические задачи разного уровня сложности: от описательных статистик и графиков до построения классификаций и прогнозов и оценки качества построенных моделей. Также вы научитесь использовать среды анализа данных, SPSS и R, для обработки и анализа данных.

  • Каждый курс специализации состоит из четырех недель обучения и одной недели практических заданий (выполнение проекта на реальных данных и оценка работ сокурсников). Таким образом, прохождение всей специализации займет в среднем от 3 до 5 месяцев в зависимости от мотивации, уровня подготовки и темпа обучения.

  • Базовые знания математики (знания в рамках школьной программы). Знакомство с основами теории вероятностей и математической статистики не обязательно, но облегчит прохождение специализации.

  • Специализация разрабатывалась так, что в порядке курсов есть логика. Первый курс задает основы для прохождения всех остальных курсов. Каждый следующий курс посвящен отдельным классам задач, сложность которых увеличивается от 2 к 4 курсу. Проходить курсы в случайном порядке можно, но только при наличии предварительной подготовки.

Остались вопросы? Посетите Центр поддержки учащихся.