Visualizing Filters of a CNN using TensorFlow

4.6
звезд
Оценки: 23
от партнера
Coursera Project Network
В этом Бесплатный проект с консультациями вы:

Implement gradient ascent algorithm

Visualize image features that maximally activate filters of a CNN

Продемонстрируйте этот практический опыт на собеседовании

Clock1 hour
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this short, 1 hour long guided project, we will use a Convolutional Neural Network - the popular VGG16 model, and we will visualize various filters from different layers of the CNN. We will do this by using gradient ascent to visualize images that maximally activate specific filters from different layers of the model. We will be using TensorFlow as our machine learning framework. The project uses the Google Colab environment which is a fantastic tool for creating and running Jupyter Notebooks in the cloud, and Colab even provides free GPUs for your notebooks. You will need prior programming experience in Python. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, Convolutional Neural Networks, and optimization algorithms like gradient descent but want to understand how to use the TensorFlow to visualize various filters of a CNN. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Требования

Prior experience in Python, theoretical understanding of Convolutional Neural Networks and optimization algorithms like gradient descent.

Навыки, которые вы получите

  • Deep Learning
  • Artificial Neural Network
  • Convolutional Neural Network
  • Machine Learning
  • Tensorflow

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introduction

  2. Downloading the Model

  3. Get Submodels

  4. Image Visualization

  5. Training Loop

  6. Final Results

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.