Using Tensorflow for Image Style Transfer

от партнера
Coursera Project Network
В этом Бесплатный Проект с консультациями вы:

Transfer artistic styles from one image and apply them to another image

Продемонстрируйте этот практический опыт на собеседовании

Clock2 hours
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

Have you ever wished you could paint like Van Gogh, Monet or even Picasso? Better yet, have you wished for an easy way to convert your own images into new ones incorporating the style of these famous artists? With Neural Style Transfer, Convolutional Neural Networks (CNNs) distill the essence of the style of any famous artist it is fed, and are able to transfer that style to any other image. In this project-based course, you will learn how to utilize Python and Tensorflow to build a Neural Style Transfer (NST) model using a VGG19 CNN. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Требования

Intermediate knowledge and experience with Python

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introducing Neural Style Transfer with Examples

  2. Setup and Configure Modules and Visualizing the Inputs

  3. Defining content and style representations

  4. Building the model and calculating and extracting style with intermediate feature maps

  5. Training the Model

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.