XG-Boost 101: Used Cars Price Prediction

4.7
звезд

Оценки: 25

от партнера
В этом Проект с консультациями вы:

Understand the theory and intuition behind XG-Boost Algorithm.

Build, train and evaluate XG-Boost, Random Forest, Decision Tree, and Multiple Linear Regression Models Using Scikit-Learn.

Assess the performance of trained regression models using various Key performance indicators.

2 hours
Учащийся среднего уровня
Загрузка не требуется
Видео на разделенном экране
Английский
Только для ПК

In this hands-on project, we will train 3 Machine Learning algorithms namely Multiple Linear Regression, Random Forest Regression, and XG-Boost to predict used cars prices. This project can be used by car dealerships to predict used car prices and understand the key factors that contribute to used car prices. By the end of this project, you will be able to: - Understand the applications of Artificial Intelligence and Machine Learning techniques in the banking industry - Understand the theory and intuition behind XG-Boost Algorithm - Import key Python libraries, dataset, and perform Exploratory Data Analysis. - Perform data visualization using Seaborn, Plotly and Word Cloud. - Standardize the data and split them into train and test datasets.   - Build, train and evaluate XG-Boost, Random Forest, Decision Tree, and Multiple Linear Regression Models Using Scikit-Learn. - Assess the performance of regression models using various Key Performance Indicators (KPIs). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

  • Artificial Intelligence (AI)

  • Python Programming

  • Machine Learning

  • regression

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Understand the problem statement and business case

  2. Import libraries/datasets and perform Exploratory Data Analysis

  3. Perform Data Visualization - Part #1

  4. Perform Data Visualization - Part #2

  5. Prepare the data before model training

  6. Train and Evaluate a Multiple Linear Regression model

  7. Train and Evaluate a Decision Tree and a Random Forest models

  8. Understand the Theory and Intuition Behind XG-Boost Algorithm

  9. Train and Evaluate a XG-Boost model

  10. Compare models and calculate Regression KPIs

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Рецензии

Лучшие отзывы о курсе XG-BOOST 101: USED CARS PRICE PREDICTION

Посмотреть все отзывы

Часто задаваемые вопросы

Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.

Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.

Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.

Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.

Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.

Финансовая помощь недоступна для проектов с рекомендациями.

Прослушивание недоступно для проектов с консультациями.

В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.

Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.

Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.