Text Generation with Markov Chains in Python

от партнера
Coursera Project Network
В этом Бесплатный Проект с консультациями вы:

l​earn about Markov chains and apply this concept to modeling and generating text.

Продемонстрируйте этот практический опыт на собеседовании

Clock1 hour
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this project-based course, you will learn about Markov chains and use them to build a probabilistic model of an entire book’s text. This will be done from first principles, without libraries. Markov chains are a simple but fundamental approach to modeling stochastic processes, with many practical applications. By the end of this project, you will have generated a random new text based on the book you modeled, using code you wrote in Python.

Требования

I​ntermediate Python programming

Навыки, которые вы получите

Artificial Intelligence (AI)Probability TheoryPython ProgrammingNumpyMarkov Chain

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Read text from file

  2. Build a transition probability matrix

  3. Generate text using a Markov chain

  4. Improve capitalization, punctuation and spacing

  5. Improve text generation with k-token Markov chains

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.