Optimize TensorFlow Models For Deployment with TensorRT

4.6
звезд

Оценки: 56

от партнера

3 374 уже зарегистрированы

В этом Бесплатный проект с консультациями вы:

Optimize Tensorflow models using TensorRT (TF-TRT)

Use TF-TRT to optimize several deep learning models at FP32, FP16, and INT8 precision

Observe how tuning TF-TRT parameters affects performance and inference throughput

Продемонстрируйте этот практический опыт на собеседовании

1.5 hours
Учащийся среднего уровня
Загрузка не требуется
Видео на разделенном экране
Английский
Только для ПК

This is a hands-on, guided project on optimizing your TensorFlow models for inference with NVIDIA's TensorRT. By the end of this 1.5 hour long project, you will be able to optimize Tensorflow models using the TensorFlow integration of NVIDIA's TensorRT (TF-TRT), use TF-TRT to optimize several deep learning models at FP32, FP16, and INT8 precision, and observe how tuning TF-TRT parameters affects performance and inference throughput. Prerequisites: In order to successfully complete this project, you should be competent in Python programming, understand deep learning and what inference is, and have experience building deep learning models in TensorFlow and its Keras API. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Требования

It is assumed that are competent in Python programming and have prior experience with building deep learning models with TensorFlow and its Keras API

Навыки, которые вы получите

  • Deep Learning

  • NVIDIA TensorRT (TF-TRT)

  • Python Programming

  • Tensorflow

  • keras

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introduction and Project Overview

  2. Setup your TensorFlow and TensorRT Runtime

  3. Load the Data and Pre-trained InceptionV3 Model

  4. Create batched Input

  5. Load the TensorFlow SavedModel

  6. Get Baseline for Prediction Throughput and Accuracy

  7. Convert a TensorFlow saved model into a TF-TRT Float32 Graph

  8. Benchmark TF-TRT Float32

  9. Convert to TF-TRT Float16 and Benchmark

  10. Converting to TF-TRT INT8

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Преподаватели

Рецензии

Лучшие отзывы о курсе OPTIMIZE TENSORFLOW MODELS FOR DEPLOYMENT WITH TENSORRT

Посмотреть все отзывы

Часто задаваемые вопросы

Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.

Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.

Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.

В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.

Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.

Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.