Chevron Left
Вернуться к Avoid Overfitting Using Regularization in TensorFlow

Отзывы учащихся о курсе Avoid Overfitting Using Regularization in TensorFlow от партнера Coursera Project Network

4.8
звезд
Оценки: 74
Рецензии: 4

О курсе

In this 2-hour long project-based course, you will learn the basics of using weight regularization and dropout regularization to reduce over-fitting in an image classification problem. By the end of this project, you will have created, trained, and evaluated a Neural Network model that, after the training and regularization, will predict image classes of input examples with similar accuracy for both training and validation sets. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Лучшие рецензии

Фильтр по:

1–4 из 4 отзывов о курсе Avoid Overfitting Using Regularization in TensorFlow

автор: Ishwari R

7 авг. 2020 г.

please enable me to reset the deadlines as i was unable to complete..

автор: tale p

26 июня 2020 г.

good

автор: Ricardo D

30 янв. 2021 г.

Good introduction to regularization techniques. It's nice to learn these techniques with a relevant, but simple, example code.

автор: Deleted A

12 мая 2020 г.

Not efficiently