Avoid Overfitting Using Regularization in TensorFlow

4.8
звезд

Оценки: 75

от партнера

4 369 уже зарегистрированы

В этом Проект с консультациями вы:
2 hours
Учащийся среднего уровня
Загрузка не требуется
Видео на разделенном экране
Английский
Только для ПК

In this 2-hour long project-based course, you will learn the basics of using weight regularization and dropout regularization to reduce over-fitting in an image classification problem. By the end of this project, you will have created, trained, and evaluated a Neural Network model that, after the training and regularization, will predict image classes of input examples with similar accuracy for both training and validation sets. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

  • Data Science

  • Deep Learning

  • Machine Learning

  • Tensorflow

  • keras

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Рецензии

Лучшие отзывы о курсе AVOID OVERFITTING USING REGULARIZATION IN TENSORFLOW

Посмотреть все отзывы

Часто задаваемые вопросы