Project: Avoid Overfitting Using Regularization in TensorFlow

от партнера
Rhyme
В этом проект с консультациями вы:

Develop an understanding on how to avoid over-fitting with weight regularization and dropout regularization

Be able to apply both weight regularization and dropout regularization in Keras with TensorFlow backend

Clock2 hours
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский + subtitles
LaptopНе для мобильных устройств

In this 2-hour long project-based course, you will learn the basics of using weight regularization and dropout regularization to reduce over-fitting in an image classification problem. By the end of this project, you will have created, trained, and evaluated a Neural Network model that, after the training and regularization, will predict image classes of input examples with similar accuracy for both training and validation sets. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

Data ScienceDeep LearningMachine LearningTensorflowkeras

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Import the data

  2. Process the data

  3. Regularization and Dropout

  4. Creating the Experiment

  5. Assess the final results

Как устроены проекты с консультациями

Ваше рабочее пространство — это виртуальный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

  • Приобретая проект, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.

  • Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты недоступны на мобильном устройстве.

  • Ведущие проект преподаватели — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.

  • Вы можете скачать и сохранить любой из созданных файлов своего проекта. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.

  • Финансовая помощь недоступна для проектов.

  • Вам не нужны предварительные знания, чтобы начать работу с проектом. Преподаватель поможет вам на каждом этапе проекта.

  • Да, все необходимое для завершения проекта будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.

  • Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.