TensorFlow for CNNs: Transfer Learning

3.9
звезд
Оценки: 10
от партнера
Coursera Project Network
В этом Проект с консультациями вы:

Learn how to apply transfer learning to fine-tune a pre-trained model

Learn how to use existing models for creating a new model

Learn how to create a convolutional neural network with Tensorflow

Clock1.5 hours
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

This guided project course is part of the "Tensorflow for Convolutional Neural Networks" series, and this series presents material that builds on the second course of DeepLearning.AI TensorFlow Developer Professional Certificate, which will help learners reinforce their skills and build more projects with Tensorflow. In this 1.5-hour long project-based course, you will learn how to apply transfer learning to fine-tune a pre-trained model for your own image classes, and you will train your model with Tensorflow using real-world images. By the end of this project, you will have applied transfer learning on a pre-trained model to train your own image classification model with TensorFlow. This class is for learners who want to learn how to apply transfer learning to re-use pre-trained models to create a new model, work with convolutional neural networks and use Python for building convolutional neural networks with TensorFlow, and for learners who are currently taking a basic deep learning course or have already finished a deep learning course and are searching for a practical deep learning project with TensorFlow project. Also, this project provides learners with further knowledge about creating and training convolutional neural networks and improves their skills in Tensorflow which helps them in fulfilling their career goals by adding this project to their portfolios.

Навыки, которые вы получите

  • Tensorflow,
  • Artificial Neural Network
  • Transfer Learning,
  • Deep Learning,
  • Convolutional Neural Networks,

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introduction and overview of the project

  2. Setup and Use a Pretrained classifier

  3. Apply Transfer Learning

  4. Train the Model and Visualize Results

  5. Make Visualized Predictions

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.