TensorFlow for AI: Get to Know Tensorflow

4.2
звезд

Оценки: 54

от партнера

3 995 уже зарегистрированы

В этом Проект с консультациями вы:

Learn the main components of Tensorflow through hands-on exercises

Learn how to Create and Train a Neural Network with Tensorflow

Learn how to use Tensorflow for practical AI projects

1.5 hours
Учащийся среднего уровня
Загрузка не требуется
Видео на разделенном экране
Английский
Только для ПК

This guided project course is part of the "Tensorflow for AI" series, and this series presents material that builds on the first course of DeepLearning.AI TensorFlow Developer Professional Certificate offered at Coursera, which will help learners reinforce their skills and build more projects with Tensorflow. In this 1-hour long project-based course, you will get to know the basics and main components of Tensorflow through hands-on exercises, and you will learn how to define, compile and train a neural network with Tensorflow, and you will get a bonus practical deep learning project implemented with Tensorflow. By the end of this project, you will have developed a deeper understanding of Tensorflow, learned how to build a neural network with Tensorflow, and learned practically how to use Tensorflow to implement AI projects so that you can start building and applying scalable models to real-world problems. This class is for learners who want to use Python for building AI models with TensorFlow, and for learners who are currently taking a basic deep learning course or have already finished a deep learning course and are searching for a practical deep learning with TensorFlow project. Also, this project provides learners with deeper knowledge about the basics of Tensorflow and its main components and improves their skills in Tensorflow which helps them in fulfilling their career goals by adding this project to their portfolios.

Навыки, которые вы получите

  • Tensorflow

  • Python Programming

  • Deep Learning

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introduction and Overview of the whole Project

  2. Import Libraries and solve Practical Examples

  3. Create TensorFlow Pipeline

  4. Define, Compile and Train a Neural Network

  5. Simple Exercises for further Practice

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Рецензии

Лучшие отзывы о курсе TENSORFLOW FOR AI: GET TO KNOW TENSORFLOW

Посмотреть все отзывы

Часто задаваемые вопросы

Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.

Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.

Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.

Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.

Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.

Финансовая помощь недоступна для проектов с рекомендациями.

Прослушивание недоступно для проектов с консультациями.

В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.

Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.

Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.