Understand the theory behind support vector machines
Builld SVM models with scikit-learn to classify linear and non-linear data
Determine the strengths and limitations of SVMs
Develop an SVM-based facial recognition model
In this project, you will learn the functioning and intuition behind a powerful class of supervised linear models known as support vector machines (SVMs). By the end of this project, you will be able to apply SVMs using scikit-learn and Python to your own classification tasks, including building a simple facial recognition model. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:
Getting Started
Beyond Linear Discriminative Classifiers
Many Possible Separators
Plotting the Margins
Training an SVM Model
Facial Recognition with SVMs
Preprocessing the data set
Hyperparameter Tuning with Grid-Search Cross Validation
Visualize Test Images
Evaluating the Support Vector Classifier
Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.
На разделенном экране видео преподаватель предоставляет пошаговые
It might be difficult for some people to understand this course who have zero knowledge of machine learning. Overall the course was good.
Beginner friendly and walks you through most of major steps which are usually done in Machine Learning Projects with SVM. Good course
Learned about SVM. Need t revisit the code and get most out of it.\n\nThings were concise and that is the strength of the course.
This guided project will definitely give you a practical approach to what you have read in SVM. Will definitely worth your time.
Что я получу, приобретя проект с рекомендациями?
Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.
Доступны ли проекты с консультациями на ПК и мобильных устройствах?
Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.
Какие преподаватели ведут проекты с рекомендациями?
Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.
Можно ли скачать работу из уже завершенного проекта с рекомендациями?
Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.
Какие правила возврата средств?
Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.
Можно ли получить финансовую помощь?
Финансовая помощь недоступна для проектов с рекомендациями.
Можно ли прослушать проект с рекомендациями и посмотреть видео бесплатно?
Прослушивание недоступно для проектов с консультациями.
Какие предварительные знания требуются для работы над проектом с рекомендациями?
В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.
Можно ли выполнить этот проект с рекомендациями в веб-браузере, не устанавливая специальное ПО?
Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.
Как организована учеба на проектах с рекомендациями?
Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.
Остались вопросы? Посетите Центр поддержки учащихся.