Chevron Left
Вернуться к Support Vector Machines with scikit-learn

Отзывы учащихся о курсе Support Vector Machines with scikit-learn от партнера Coursera Project Network

4.3
звезд
Оценки: 301
Рецензии: 51

О курсе

In this project, you will learn the functioning and intuition behind a powerful class of supervised linear models known as support vector machines (SVMs). By the end of this project, you will be able to apply SVMs using scikit-learn and Python to your own classification tasks, including building a simple facial recognition model. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Лучшие рецензии

MS
22 апр. 2020 г.

Learned about SVM.\n\nNeed t revisit the code and get most out of it.\n\nThings were concise and that is the strength of the course.

SY
12 мая 2020 г.

This guided project will definitely give you a practical approach to what you have read in SVM.\n\nWill definitely worth your time.

Фильтр по:

1–25 из 51 отзывов о курсе Support Vector Machines with scikit-learn

автор: Tanish M S

30 мар. 2020 г.

The instructor has mastery over these topics. I really enjoyed the session!

автор: Rachana C

28 мар. 2020 г.

Need more thorpugh explanation of python libraries and functions.

автор: K B P

6 сент. 2020 г.

The explanation could have been better. I didn't understand the reason behind giving less importance to the conceptual topics. Hope to see some good explanation from other projects.

автор: Sarthak P

10 июня 2020 г.

It Okay types experience.

автор: Satyendra k

29 мая 2020 г.

I am satendra kumar, Ipresuing b. Tech Me lkg ptu main campus kapurthala . I learned about in SVM machine learning, machine learning are three type superwise learning, non superwise learning and re- superwise letaning. SVM likes in the superwise learning. SVM are two types quadrilateral and circle are modle training.

автор: Shubham Y

13 мая 2020 г.

This guided project will definitely give you a practical approach to what you have read in SVM.

Will definitely worth your time.

автор: Mayank S

23 апр. 2020 г.

Learned about SVM.

Need t revisit the code and get most out of it.

Things were concise and that is the strength of the course.

автор: ANURAG P

10 июля 2020 г.

Application-based course with detailed knowledge of SVMs along with an implementation in image classification

автор: Lasal J

23 дек. 2020 г.

Nicely Done, Just wished if we used real-world datasets instead of the sci-kit learn one.

автор: Abhishek P G

18 июня 2020 г.

I am grateful to have the chance to participate in an online course like this!

автор: RUDRA P D

16 сент. 2020 г.

The course is like a crash course on SVMs with good explanation of concepts.

автор: Sebastian J

15 апр. 2020 г.

Highly recommended to those who have an understanding of SVMs.

автор: Ujjwal K

9 мая 2020 г.

Nice Project! But theory should have explained a little more.

автор: SHOMNATH D

8 мая 2020 г.

I am learning so new things from the topic

автор: Ashwini M

13 июня 2020 г.

Very good project .. learned a lot

автор: Arnab S

12 окт. 2020 г.

Nicely thaught concepts

автор: Shantanu b

23 мая 2020 г.

intersting and helpfull

автор: javed a

25 июня 2020 г.

Good for the beginners

автор: JONNALA S R

5 мая 2020 г.

Good Course

автор: SHIV P S P

27 июня 2020 г.

aewsome

автор: SUDARSHINI A

31 мая 2020 г.

Nothing

автор: Kamlesh C

26 июня 2020 г.

thanks

автор: KARUNANIDHI D

26 июня 2020 г.

Good

автор: p s

22 июня 2020 г.

Nice

автор: tale p

18 июня 2020 г.

good