Support Vector Machine Classification in Python

4.4
звезд
Оценки: 57
от партнера
Coursera Project Network
В этом Проект с консультациями вы:

import the dataset and perform training/testing set splits

Apply feature scaling for normalization

Build an SVM classifier and make Predictions

Build a Confusion Matrix and Visualize the results

Clock2 hours
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this 1-hour long guided project-based course, you will learn how to use Python to implement a Support Vector Machine algorithm for classification. This type of algorithm classifies output data and makes predictions. The output of this model is a set of visualized scattered plots separated with a straight line. You will learn the fundamental theory and practical illustrations behind Support Vector Machines and learn to fit, examine, and utilize supervised Classification models using SVM to classify data, using Python. We will walk you step-by-step into Machine Learning supervised problems. With every task in this project, you will expand your knowledge, develop new skills, and broaden your experience in Machine Learning. Particularly, you will build a Support Vector Machine algorithm, and by the end of this project, you will be able to build your own SVM classification model with amazing visualization. In order to be successful in this project, you should just know the basics of Python and classification algorithms.

Навыки, которые вы получите

Machine LearningPython ProgrammingSupport Vector Machine (SVM)classificationSupervised Learning

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Understand the concept of building a Support Vector Machine classification algorithm with a real-world example

  2. Import and explore the dataset and libraries: numpy, pandas and matplotlib

  3. Split the dataset into training set and testing set

  4. Apply feature scaling to normalize the input features

  5. Fit the SVM classifier to the dataset and making predictions

  6. Visualize training and testing sets results

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Рецензии

Лучшие отзывы о курсе SUPPORT VECTOR MACHINE CLASSIFICATION IN PYTHON

Посмотреть все отзывы

Часто задаваемые вопросы

Часто задаваемые вопросы

  • Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.

  • Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.

  • Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.

  • Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.

  • Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.

  • Финансовая помощь недоступна для проектов с рекомендациями.

  • Прослушивание недоступно для проектов с консультациями.

  • В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.

  • Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.

  • Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.

Остались вопросы? Посетите Центр поддержки учащихся.