Serving Tensorflow Models with a REST API

4.1
звезд
Оценки: 12
от партнера
Coursera Project Network
В этом Проект с консультациями вы:

Create and save Tensorflow models as servable objects

Integrate custom functions into servables

Serve TF servables using conforming to REST

Clock2 hours
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this project-based course, you will learn step-by-step procedures for serving Tensorflow models with a RESTful API. We will learn to save a Tensorflow object as a servable, deploy servables in Docker containers, as well as how to test our API endpoints and optimize our API response time. I would encourage learners to experiment with the tools and methods discussed in this course. The learner is highly encouraged to experiment beyond the scope of the course. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

TensorflowPython ProgrammingRepresentational State Transfer (REST)

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Define basic terminology

  2. Saving our model in the SavedModel format

  3. Serving the Model: Server Side

  4. Serving the Model: Client Requests

  5. Using Docker for serving

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.