Series Temporales con Pycaret y Python

от партнера
Coursera Project Network
В этом Проект с консультациями вы:

Entrenar diferentes modelos como Xgboost, Catboost o random forest para predecir series temporales

Predecir datos futuros en base a series de tiempo

Entrenar modelos avanzados de Machine Learning para series temporales

Clock2 horas
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsИспанский
LaptopТолько для ПК

En este proyecto aplicado y práctico aprenderás a entrenar modelos capaces de predecir series temporales. Para ello utilizaremos la librería de Pycaret con Python y entrenaremos modelos como: XGBoost, Catboost o Random forest. También aprenderemos a generar modelos más avanzados con lñas diferentes técnicas de ensamblado de modelos. Al finalizar este curso habrás aprendido a entrenar tus propios modelos y a aplicarlos en tus propios proyectos.

Навыки, которые вы получите

  • Time Series
  • Machine Learning
  • Xgboost
  • PyCaret

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introducción a las series temporales

  2. Clases de modelos de series de tiempo

  3. Fundamentos de Pycaret

  4. Series temporales univariantes. Pre-procesamiento

  5. Ejercicio aplicado. Pre-procesamiento de datos

  6. Series temporales univariantes. Entrenamiento del modelo

  7. Ejercicio aplicado. Entrenamiento de un modelo para predecir series de tiempo

  8. Series temporales univariantes. Evaluación del modelo

  9. Ejercicio aplicado. Evaluación del modelo

  10. Series temporales univariantes. Modelos avanzados

  11. Series temporales múltiples. Pre-procesamiento

  12. Ejercicio aplicado. Series temporales múltiples

  13. Series temporales múltiples. Entrenamiento y evaluación del modelo

  14. Ejercicio aplicado. Series temporales múltiples. Parte II

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.