Explainable AI: Scene Classification and GradCam Visualization

4.7
звезд

Оценки: 48

от партнера

2 193 уже зарегистрированы

В этом Проект с консультациями вы:

Understand the theory and intuition behind Deep Neural Networks, Residual Nets, and Convolutional Neural Networks (CNNs)

Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend

Visualize the Activation Maps used by CNN to make predictions using Grad-CAM and Deploy the trained model using Tensorflow Serving

2 hours
Учащийся среднего уровня
Загрузка не требуется
Видео на разделенном экране
Английский
Только для ПК

In this 2 hour long hands-on project, we will train a deep learning model to predict the type of scenery in images. In addition, we are going to use a technique known as Grad-Cam to help explain how AI models think. This project could be practically used for detecting the type of scenery from the satellite images.

Навыки, которые вы получите

  • Deep Learning

  • Machine Learning

  • Python Programming

  • Artificial Intelligence(AI)

  • Computer Vision

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Understand the theory and intuition behind Deep Neural Networks, Residual Nets, and Convolutional Neural Networks (CNNs)

  2. Apply Python libraries to import, pre-process and visualize images

  3. Perform data augmentation to improve model generalization capability

  4. Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend

  5. Compile and fit Deep Learning model to training data

  6. Assess the performance of trained CNN and ensure its generalization using various KPIs such as accuracy, precision and recall

  7. Understand the theory and intuition behind GradCam and Explainable AI

  8. Visualize the Activation Maps used by CNN to make predictions using Grad-CAM

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Рецензии

Лучшие отзывы о курсе EXPLAINABLE AI: SCENE CLASSIFICATION AND GRADCAM VISUALIZATION

Посмотреть все отзывы

Часто задаваемые вопросы

Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.

Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.

Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.

Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.

Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.

Финансовая помощь недоступна для проектов с рекомендациями.

Прослушивание недоступно для проектов с консультациями.

В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.

Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.

Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.