Chevron Left
Вернуться к Save, Load and Export Models with Keras

Отзывы учащихся о курсе Save, Load and Export Models with Keras от партнера Coursera Project Network

Оценки: 93
Рецензии: 11

О курсе

In this 1 hour long project based course, you will learn to save, load and restore models with Keras. In Keras, we can save just the model weights, or we can save weights along with the entire model architecture. We can also export the models to TensorFlow's Saved Mode format which is very useful when serving a model in production, and we can load models from the Saved Model format back in Keras as well. In order to be successful in this project, you should be familiar with python programming, and basics of neural networks. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Лучшие рецензии

Фильтр по:

1–11 из 11 отзывов о курсе Save, Load and Export Models with Keras

автор: Ramya G R

8 июня 2020 г.

I really enjoyed working with this project. Thank you so much for the valuable teaching.

автор: Yaron K

16 апр. 2021 г.

Detailed explanations of various Keras save options, and their parameters. If there are problems with the Rhyme environment - you can download the completed notebook from the Resource section of the project and run it locally (or on a cloud platform like Google Colab)

автор: Karl J

15 июня 2020 г.

Great course on saving and loading models.

автор: Gangone R

2 июля 2020 г.

very useful course

автор: 17_055 M S

21 сент. 2020 г.


автор: p s

22 июня 2020 г.


автор: tale p

28 июня 2020 г.


автор: Рюмин Д

9 мая 2020 г.

Four, because the video viewing system and practice are slow. Waiting for downloads takes a long time.

автор: Pascal U E

27 авг. 2020 г.

I had a technical issue when creating the checkpoints


11 июля 2020 г.


автор: Nahid I A

16 мая 2020 г.

Rhyme texts are so tiny and blurry to follow, the virtual environment takes too much time to load. Otherwise it is a good course to understand basic keras.