PyCaret: Anatomy of Regression

от партнера
Coursera Project Network
В этом Бесплатный проект с консультациями вы:

How to create a regression environment and compare model performance

Create best performing regression models

Using hyper parameter to tune models

Продемонстрируйте этот практический опыт на собеседовании

Clock2 hours 15 mins
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this 2 hour and 15 mins long project-based course, you will learn how to ow to set up PyCaret Environment and become familiar with the variety of data preparing tasks done during setup, be able to create, see and compare the performance of several models, learn how to tune your model without doing an exhaustive search, create impressive visuals of models, interpret models with the wrapper around SHAP Library and much more & all this with just a few lines of code. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Требования

Familiar with regression models, Sklearn and Python

Навыки, которые вы получите

  • PyCaret
  • Machine Learning
  • Python Programming
  • regression
  • Auto ML

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Task 1: Import Data, Initial dataset check and setup Pycaret environment

  2. Task 2: Create regression environment and compare model performance

  3. Task 3: Create best performing regression models

  4. Task 4: Hyper Parameter tuning the models

  5. Task 5: Stacking & Ensemble

  6. Task 6: Visualize and interpret the machine learning model

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.