Real-time OCR and Text Detection with Tensorflow, OpenCV and Tesseract

3.7
звезд
Оценки: 135
от партнера
Coursera Project Network
6 894 уже зарегистрированы
В этом Проект с консультациями вы:

Train Tensorflow to recognize a Region of Interest (ROI) in an image or frame of a video.

Extract and enhance relevant image segments with OpenCV .

Use Tesseract to extract, export text data for use in real-time.

Clock2 hours
AdvancedПродвинутые функции
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this 1-hour long project-based course, you will learn how to collect and label images and use them to train a Tensorflow CNN (convolutional neural network) model to recognize relevant areas of (typeface) text in any image, video frame or frame from webcam video. You will learn how to extract image segments that your detector has identified as containing text and enhance them using various image filters from the OpenCV module. Then you will learn how to pass the result image to Google's open-source OCR (Optical Character Recognition) software using the pytesseract python library and read the text to whatever form of output you like. All of this will be done on Windows, but can be accomplished with very little alteration on Linux as well. We will be using the IDLE development environment to write a single script to scan our video, webcam input, or array of images for text and read that text into our output. Tensorflow, the Tensorflow Object Detection API, Tesseract, the pytesseract library, labelImg for image annotation, OpenCV, and all other required software has already been installed for you in your Rhyme desktop. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

  • Tensorflow
  • Deep Learning in Python
  • Object Detection
  • Optical Character Recognition
  • Computer Vision

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introduction to the Course

  2. Setting up our script

  3. Collect and Label Images for ROI Recognition

  4. Summary of Tensorflow Model Training -

  5. Capturing Input in the form of Webcam, Images or Video File

  6. Extract and Enhance ROI with OpenCV

  7. Use Tesseract to extract, export and use text data

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.