Object Detection with Amazon Sagemaker

4.6
звезд
Оценки: 81
от партнера
Coursera Project Network
6,245 уже зарегистрированы
В этом Проект с консультациями вы:

Prepare data for Sagemaker Object Detection.

Train a model using Sagemaker.

Deploy a trained model using Sagemaker.

Clock2 hours
AdvancedПродвинутые функции
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

Please note: You will need an AWS account to complete this course. Your AWS account will be charged as per your usage. Please make sure that you are able to access Sagemaker within your AWS account. If your AWS account is new, you may need to ask AWS support for access to certain resources. You should be familiar with python programming, and AWS before starting this hands on project. We use a Sagemaker P type instance in this project, and if you don't have access to this instance type, please contact AWS support and request access. In this 2-hour long project-based course, you will learn how to train and deploy an object detector using Amazon Sagemaker. Sagemaker provides a number of machine learning algorithms ready to be used for solving a number of tasks. We will use the SSD Object Detection algorithm from Sagemaker to create, train and deploy a model that will be able to localize faces of dogs and cats from the popular IIIT-Oxford Pets Dataset. Since this is a practical, project-based course, we will not dive in the theory behind deep learning based SSD or Object Detection, but will focus purely on training and deploying a model with Sagemaker. You will also need to have some experience with Amazon Web Services (AWS). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

Deep LearningMachine LearningsagemakerObject DetectionComputer Vision

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introduction

  2. Annotations

  3. Visualize the Data

  4. Sagemaker Setup

  5. Preparing the Data

  6. Uploading Data to S3

  7. Sagemaker Estimator

  8. Data Channels and Model Training

  9. Deploying the Model

  10. Inference and Deleting the Endpoint

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Преподаватели

Рецензии

Лучшие отзывы о курсе OBJECT DETECTION WITH AMAZON SAGEMAKER

Посмотреть все отзывы

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.