Build Multilayer Perceptron Models with Keras

4.6
звезд
Оценки: 82
от партнера
Coursera Project Network
3,274 уже зарегистрированы
В этом Проект с консультациями вы:

Build and train a multilayer perceptron (MLP) with Keras

Perform topic classification with neural networks

Clock1 hour
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this 45-minute long project-based course, you will build and train a multilayer perceptronl (MLP) model using Keras, with Tensorflow as its backend. We will be working with the Reuters dataset, a set of short newswires and their topics, published by Reuters in 1986. It's a very simple, widely used toy dataset for text classification. There are 46 different topics, some of which are more represented than others. But each topic has at least 10 examples in the training set. So in this project, you will build a MLP feed-forward neural network to classify Reuters newswires into 46 different mutually-exclusive topics. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

Data ScienceDeep LearningMachine LearningTensorflowkeras

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Project Overview and Import Libraries

  2. Load the Reuters Dataset

  3. Vectorize Sequences and One-hot Encode Class Labels

  4. Build Multilayer Perceptron Model

  5. Train Model

  6. Evaluate Model on Test Data

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Преподаватели

Рецензии

Лучшие отзывы о курсе BUILD MULTILAYER PERCEPTRON MODELS WITH KERAS

Посмотреть все отзывы

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.