Machine Learning Interpretable: interpretML y LIME

от партнера
Coursera Project Network
В этом Проект с консультациями вы:

Conocer los fundamentos de la interpretabilidad de modelos

Aplicar librerías para la interpretabilidad de modelos como: LIME e interpretML

Desarrollar modelos interpretables de Random Forest y Explainable Boosting Machine

Clock2 horas
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsИспанский
LaptopТолько для ПК

Este proyecto es un curso práctico y efectivo para aprender a generar modelos de Machine Learning interpretables. Se explican en profundidad diferentes técnicas de interpretabilidad de modelos como: interpretML y LIME que nos permitirá entender el porqué de las predicciones. Gracias a esto, aprenderás a entrenar modelos Glassbox que puedas entender el porqué de sus decisiones.

Навыки, которые вы получите

  • Machine Learning
  • interpretML
  • Explainable Machine Learning
  • LIME

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introducción a los modelos de Machine Learning Interpretables

  2. LIME: Modelos localmente interpretables

  3. Programación de LIME

  4. InterpretML de Microsoft

  5. Programación de InterpretML

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.