Logistic Regression for Classification using Julia

от партнера
Coursera Project Network
В этом Проект с консультациями вы:

Balance data suing the SMOTE method.

Build a logistic regression model.

Clock1 hour 30 minutes
BeginnerНачинающий
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

This guided project is about book genre classification using logistic regression in Julia. It is ideal for beginners who do not know what logistic regression is because this project explains these concepts in simple terms. While you are watching me code, you will get a cloud desktop with all the required software pre-installed. This will allow you to code along with me. After all, we learn best with active, hands-on learning. Special features: 1) Simple explanations of important concepts. 2) Use of images to aid in explanation. 3) Use a real world dataset. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

Data ScienceMachine LearningLogistic Regressiondata preperationjulia

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Exploratory data analysis

  2. One-hot encoding

  3. Check if data is balanced

  4. Build a logistic regression model

  5. Check model accuracy

  6. Check ROC numbers to determine number of false positives and false negatives.

  7. Using SMOTE to correct the imbalanced data

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.