Linear Regression with Python

4.6
звезд
Оценки: 276
от партнера
Coursera Project Network
4,675 уже зарегистрированы
В этом Проект с консультациями вы:

Create a linear model, and implement gradient descent.

Train the linear model to fit given data using gradient descent.

Clock2 hours
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this 2-hour long project-based course, you will learn how to implement Linear Regression using Python and Numpy. Linear Regression is an important, fundamental concept if you want break into Machine Learning and Deep Learning. Even though popular machine learning frameworks have implementations of linear regression available, it's still a great idea to learn to implement it on your own to understand the mechanics of optimization algorithm, and the training process. Since this is a practical, project-based course, you will need to have a theoretical understanding of linear regression, and gradient descent. We will focus on the practical aspect of implementing linear regression with gradient descent, but not on the theoretical aspect. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

Data ScienceDeep LearningMachine LearningPython ProgrammingLinear Regression

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introduction

  2. Dataset

  3. Initialize Parameters

  4. Forward Pass

  5. Compute Loss

  6. Backward Pass

  7. Update Parameters

  8. Training Loop

  9. Predictions

  10. Additional Example

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Преподаватели

Рецензии

Лучшие отзывы о курсе LINEAR REGRESSION WITH PYTHON

Посмотреть все отзывы

Часто задаваемые вопросы

Часто задаваемые вопросы

  • Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.

  • Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.

  • Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.

  • Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.

  • Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.

  • Финансовая помощь недоступна для проектов с рекомендациями.

  • Прослушивание недоступно для проектов с консультациями.

  • В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.

  • Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.

  • Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.

Остались вопросы? Посетите Центр поддержки учащихся.