Chevron Left
Вернуться к Interpretable Machine Learning Applications: Part 4

Отзывы учащихся о курсе Interpretable Machine Learning Applications: Part 4 от партнера Coursera Project Network

О курсе

In this 1-hour long guided project, you will learn how to use the "What-If" Tool (WIT) in the context of training and testing machine learning prediction models. In particular, you will learn a) how to set up a machine learning application in Python by using interactive Python notebook(s) on Google's Colab(oratory) environment, a.k.a. "zero configuration" environment, b) import and prepare the data, c) train and test classifiers as prediction models, d) analyze the behavior of the trained prediction models by using WIT for specific data points (individual basis), e) moving on to the analysis of the behavior of the trained prediction models by using WIT global basis, i.e., all test data considered. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....
Фильтр по:

1–1 из 1 отзывов о курсе Interpretable Machine Learning Applications: Part 4

автор: Pascal U E

3 июля 2021 г.

It seems like there is a lot more to do about what-if and It would be good to have some in the project