Fake Instagram Profile Detector

4.5
звезд

Оценки: 26

от партнера
В этом Проект с консультациями вы:

Understand the theory and intuition behind Deep Neural Networks.

Build and train a deep learning model using Keras with Tensorflow 2.0 as a backend.

Assess the performance of trained model and ensure its generalization using various Key performance indicators.

1.5 hours
Начинающий
Загрузка не требуется
Видео на разделенном экране
Английский
Только для ПК

In this hands-on project, we will build and train a simple artificial neural network model to detect spam/fake Instagram accounts. Fake and spam accounts are a major problem in social media. Many social media influencers use fake Instagram accounts to create an illusion of having so many social media followers. Fake accounts can be used to impersonate or catfish other people and be used to sell fake services/products. By the end of this project, you will be able to: - Understand the applications of Artificial Intelligence and Machine Learning techniques in the banking industry - Understand the theory and intuition behind Deep Neural Networks - Import key Python libraries, dataset, and perform Exploratory Data Analysis. - Perform data visualization using Seaborn. - Standardize the data and split them into train and test datasets. - Build a deep learning model using Keras with Tensorflow 2.0 as a back-end. - Assess the performance of the model and ensure its generalization using various Key Performance Indicators (KPIs). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

  • Deep Learning

  • Machine Learning

  • Python Programming

  • classification

  • Artificial Intelligence(AI)

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Task 1: Understand the problem statement and business case

  2. Task 2: Import Datasets and Libraries

  3. Task 3: Exploratory Data Analysis

  4. Task 4: Perform Data Visualization

  5. Task 5: Prepare the data to feed the model

  6. Task 6: Understand the theory and intuition behind Artificial Neural Networks

  7. Task 7: Build a simple Multi Layer Neural Network

  8. Task 8: Compile and train a Deep Learning Model

  9. Task 9: Assess the performance of the trained model

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.

Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.

Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.

Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.

Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.

Финансовая помощь недоступна для проектов с рекомендациями.

Прослушивание недоступно для проектов с консультациями.

В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.

Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.

Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.