Image Noise Reduction with Auto-encoders using TensorFlow
Оценки: 107

4 678 уже зарегистрированы
Develop an understanding of how Auto encoders work.
Be able to apply an auto encoder to reduce noise in given images.
4 678 уже зарегистрированы
Develop an understanding of how Auto encoders work.
Be able to apply an auto encoder to reduce noise in given images.
In this 2-hour long project-based course, you will learn the basics of image noise reduction with auto-encoders. Auto-encoding is an algorithm to help reduce dimensionality of data with the help of neural networks. It can be used for lossy data compression where the compression is dependent on the given data. This algorithm to reduce dimensionality of data as learned from the data can also be used for reducing noise in data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Tensorflow pre-installed. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Data Science
Deep Learning
Noise Reduction
Machine Learning
Autoencoder
На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:
Introduction and Importing Libraries
Data Preprocessing
Adding Noise
Building and Training a Classifier
Building the Autoencoder
Training the Autoencoder
Denoised Images
Composite Model
Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.
На разделенном экране видео преподаватель предоставляет пошаговые
от партнера RB
16 апр. 2020 г.A nice and short project and a good way to built a simple autoencoder and neural network classifier and getting them up and running.
от партнера NS
15 авг. 2020 г.nice presentation skill, it is helpful for me to noise reduction and image processing
от партнера KO
11 окт. 2020 г.Teachable and Readable course. Thanks so much!!
от партнера NL
7 апр. 2020 г.Really great learning for beginners. Through project learning it gives very good confidence. But rhyme desktop should be available until completion of project.
Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.
Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.
Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.
Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.
Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.
Финансовая помощь недоступна для проектов с рекомендациями.
Прослушивание недоступно для проектов с консультациями.
В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.
Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.
Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.
Остались вопросы? Посетите Центр поддержки учащихся.