How to preprocess and prepare data for vision tasks using PyTorch
What a variational autoencoder is and how to train one
How to compress, reconstruct, and generate new images using a generative model
In this 1-hour long project, you will be introduced to the Variational Autoencoder. We will discuss some basic theory behind this model, and move on to creating a machine learning project based on this architecture. Our data comprises 60.000 characters from a dataset of fonts. We will train a variational autoencoder that will be capable of compressing this character font data from 2500 dimensions down to 32 dimensions. This same model will be able to then reconstruct its original input with high fidelity. The true advantage of the variational autoencoder is its ability to create new outputs that come from distributions that closely follow its training data: we can output characters in brand new fonts. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:
An introduction to the variational autoencoder and our project
Dataset visualization and preprocessing
Dataset split into training and validation sets
Use data loaders to handle memory overload
Create VAE architecture
Create training loop for VAE
Results of our model and short introduction to other potential projects using a VAE
Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.
На разделенном экране видео преподаватель предоставляет пошаговые
It is highly recommended to those who has a basic knowledge in ML and like to start using VAEs in pytorch framework. :-)
It was really helpful. I am new to PyTorch but it gave a good level of understanding overall. thank you
Good project. Add some more clarity to it , especially to the mathematical background.
Что я получу, приобретя проект с рекомендациями?
Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.
Доступны ли проекты с консультациями на ПК и мобильных устройствах?
Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.
Какие преподаватели ведут проекты с рекомендациями?
Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.
Можно ли скачать работу из уже завершенного проекта с рекомендациями?
Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.
Какие правила возврата средств?
Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.
Можно ли получить финансовую помощь?
Финансовая помощь недоступна для проектов с рекомендациями.
Можно ли прослушать проект с рекомендациями и посмотреть видео бесплатно?
Прослушивание недоступно для проектов с консультациями.
Какие предварительные знания требуются для работы над проектом с рекомендациями?
В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.
Можно ли выполнить этот проект с рекомендациями в веб-браузере, не устанавливая специальное ПО?
Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.
Как организована учеба на проектах с рекомендациями?
Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.
Остались вопросы? Посетите Центр поддержки учащихся.