Graduate Admission Prediction with Pyspark ML

4.7
звезд
Оценки: 17
от партнера
Coursera Project Network
В этом Проект с консультациями вы:

Learn to build the Linear Regression Model using Pyspark ML to predict admission

Learn to setup Pyspark and work with Pyspark dataframes in Colab Environment

Learn to clean and prepare data for analysis.

Clock1.5 hours
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this 1 hour long project-based course, you will learn to build a linear regression model using Pyspark ML to predict students' admission at the university. We will use the graduate admission 2 data set from Kaggle. Our goal is to use a Simple Linear Regression Machine Learning Algorithm from the Pyspark Machine learning library to predict the chances of getting admission. We will be carrying out the entire project on the Google Colab environment with the installation of Pyspark. You will need a free Gmail account to complete this project. Please be aware of the fact that the dataset and the model in this project, can not be used in the real-life. We are only using this data for the learning purposes. By the end of this project, you will be able to build the linear regression model using Pyspark ML to predict admission chances.You will also be able to setup and work with Pyspark on the Google Colab environment. Additionally, you will also be able to clean and prepare data for analysis. You should be familiar with the Python Programming language and you should have a theoretical understanding of Linear Regression algorithm. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

  • Machine Learning
  • Data Analysis
  • Big Data
  • Linear Regression
  • PySpark

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introduction and Installing Dependencies

  2. Clone and Explore the Dataset

  3. Data Cleaning

  4. Correlation analysis and Feature Selection

  5. Build the Linear Regression Model

  6. Evaluate and Test the model

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Рецензии

Лучшие отзывы о курсе GRADUATE ADMISSION PREDICTION WITH PYSPARK ML

Посмотреть все отзывы

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.