Getting Started with Tensorflow.js

от партнера
Coursera Project Network
В этом Проект с консультациями вы:

Set up a browser-based project using script tags and an HTML body

Import pre-trained Keras models into a Tensorflow.js web app

Code a prototype Web app using Tensorflow.js

Clock2 hours
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

By the end of this project, you will learn how to code a smart webcam to detect people and other everyday objects using a pre-trained COCO-SSD image recognition model with Tensorflow.js. Based on an older library called deeplearn.js, Tensorflow.js is a deep learning library that leverages Tensorflow to create, train and run inference on artificial neural network models directly in a web browser, utilizing the client's GPU/CPU resources (accelerated using WebGL). Tensorflow.js brings Tensorflow to the web! JavaScript/Typescript experience is heavily recommended. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

Deep LearningHtmlWeb ApplicationTensorflowJavaScript

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Getting Familiar with Tensorflow.js

  2. Using ml5js

  3. Setting up a Tensorflow.js Project

  4. We are going to very briefly cover CSS styling in the p5js editor

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.