Facial Expression Classification Using Residual Neural Nets

4.6
звезд

Оценки: 71

от партнера

4 116 уже зарегистрированы

В этом Проект с консультациями вы:
2 hours
Начинающий
Загрузка не требуется
Видео на разделенном экране
Английский
Только для ПК

In this hands-on project, we will train a deep learning model based on Convolutional Neural Networks (CNNs) and Residual Blocks to detect facial expressions. This project could be practically used for detecting customer emotions and facial expressions. By the end of this project, you will be able to: - Understand the theory and intuition behind Deep Learning, Convolutional Neural Networks (CNNs) and Residual Neural Networks. - Import Key libraries, dataset and visualize images. - Perform data augmentation to increase the size of the dataset and improve model generalization capability. - Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs. - Improve network performance using regularization techniques such as dropout.

Навыки, которые вы получите

  • Data Science

  • Deep Learning

  • Machine Learning

  • Python Programming

  • Computer Vision

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Рецензии

Лучшие отзывы о курсе FACIAL EXPRESSION CLASSIFICATION USING RESIDUAL NEURAL NETS

Посмотреть все отзывы

Часто задаваемые вопросы