Chevron Left
Вернуться к Exploratory Data Analysis with Seaborn

Отзывы учащихся о курсе Exploratory Data Analysis with Seaborn от партнера Coursera Project Network

Оценки: 401

О курсе

Producing visualizations is an important first step in exploring and analyzing real-world data sets. As such, visualization is an indispensable method in any data scientist's toolbox. It is also a powerful tool to identify problems in analyses and for illustrating results.In this project-based course, we will employ the statistical data visualization library, Seaborn, to discover and explore the relationships in the Breast Cancer Wisconsin (Diagnostic) Data Set. We will cover key concepts in exploratory data analysis (EDA) using visualizations to identify and interpret inherent relationships in the data set, produce various chart types including histograms, violin plots, box plots, joint plots, pair grids, and heatmaps, customize plot aesthetics and apply faceting methods to visualize higher dimensional data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Лучшие рецензии


7 сент. 2020 г.

This project is great for people go want to advances her career exploring new viz techniques. The instructor is great, clear and easy to follow. I will definitely recommend to take this project.


3 окт. 2020 г.

As a beginner, this was a very good insight into EDA for me. You will however, have to read the documentation and more articles to go in-depth. However, this is a very good introductory course.

Фильтр по:

1–25 из 67 отзывов о курсе Exploratory Data Analysis with Seaborn

автор: Ravi K

21 апр. 2020 г.

автор: Rob O

23 апр. 2020 г.

автор: Anees A

3 мая 2020 г.

автор: Suhaimi C

18 нояб. 2020 г.

автор: Pavithra K

1 авг. 2020 г.

автор: Abhijit T

9 апр. 2020 г.

автор: ASHISH M

3 мая 2020 г.

автор: Ujjwal K

10 мая 2020 г.

автор: Punam P

15 мая 2020 г.

автор: Mukund P

13 мая 2020 г.

автор: Rishabh R

17 мая 2020 г.

автор: Dr M M S

8 нояб. 2020 г.

автор: Shri H

7 нояб. 2020 г.

автор: Nesmary G M D

14 мая 2022 г.

автор: RADUL R D

12 июня 2020 г.

автор: Hector P

7 сент. 2020 г.

автор: Pawan K G

4 окт. 2020 г.

автор: Sayak P

26 июня 2020 г.

автор: Asmae A

10 апр. 2022 г.

автор: HAY a

29 июня 2020 г.

автор: Aditya T

5 нояб. 2020 г.

автор: Gourav K

27 июля 2020 г.

автор: Srikanth C

16 июня 2020 г.

автор: Carlos O G M

1 нояб. 2022 г.

автор: omkar

10 июня 2020 г.