Deep Learning with PyTorch : Image Segmentation

от партнера
Coursera Project Network
В этом Проект с консультациями вы:

Use U-Net architecture for segmentation

Create train function and evaluator for training loop

Clock2 hours
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this 2-hour project-based course, you will be able to : - Understand the Segmentation Dataset and you will write a custom dataset class for Image-mask dataset. Additionally, you will apply segmentation augmentation to augment images as well as its masks. For image-mask augmentation you will use albumentation library. You will plot the image-Mask pair. - Load a pretrained state of the art convolutional neural network for segmentation problem(for e.g, Unet) using segmentation model pytorch library. - Create train function and evaluator function which will helpful to write training loop. Moreover, you will use training loop to train the model.

Навыки, которые вы получите

  • Mathematical Optimization
  • Convolutional Neural Network
  • Autoencoder
  • Python Programming
  • pytorch

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Set up colab runtime environment

  2. Setup Configurations

  3. Augmentations

  4. Custom Dataset

  5. Load Dataset into batches

  6. Create Segmentation Model

  7. Create Train and Eval Function

  8. Train Model

  9. Inference

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.