Logistic Regression with Python and Numpy

Оценки: 33
Рецензии: 9
от партнера
В этом Guided Project вы:

Implement Logistic Regression using Python and Numpy.

Apply Logistic Regression to solve binary classification problems.

Clock2 hours
IntermediateУчащийся среднего уровня
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

In this 2-hour long project-based course, you will learn how to implement Logistic Regression using Python and Numpy. Logistic Regression is an important fundamental concept if you want break into Machine Learning and Deep Learning. Even though popular machine learning frameworks have implementations of logistic regression available, it's still a great idea to learn to implement it on your own to understand the mechanics of optimization algorithm, and the training and validation process. Since this is a practical, project-based course, you will need to have a theoretical understanding of logistic regression, and gradient descent. We will focus on the practical aspect of implementing logistic regression with gradient descent, but not on the theoretical aspect. By the end of this course, you would create and train a logistic model that will be able to predict if a given image is of hand-written digit zero or of hand-written digit one. The model will be able to distinguish between images or 0s and 1s, and it will do that with a very high accuracy. Not only that, your implementation of the logistic model will also be able to solve any generic binary classification problem. You will still have to train model instances on specific datasets of course, but you won’t have to change the implementation and it will be re-usable. The dataset for images of hand written digits comes from the popular MNIST dataset. This data set consists of images for the 10 hand-written digits (from 0 to 9), but since we are implementing logistic regression, and are looking to solve binary classification problems - we will work with examples of hand written zeros, and hand written ones and we will ignore examples of rest of the digits. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Навыки, которые вы получите

Deep LearningMachine LearningLogistic RegressionPython ProgrammingNumpy

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introduction

  2. Hyperparameters

  3. Dataset

  4. A Mini Batch of Examples

  5. Create Model

  6. Forward Pass

  7. Backward Pass

  8. Update Parameters

  9. Check Model Performance

  10. Training Loop

How Guided Projects work

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

  • By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.

  • Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.

  • Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.

  • You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.

  • Financial aid is not available for Guided Projects.

  • Auditing is not available for Guided Projects.

  • At the top of the page, you can press on the experience level for this Guided Project to view any knowledge prerequisites. For every level of Guided Project, your instructor will walk you through step-by-step.

  • Yes, everything you need to complete your Guided Project will be available in a cloud desktop that is available in your browser.

  • Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.

Остались вопросы? Посетите Центр поддержки учащихся.