Learn how to clean and extract useful information from your dataset in Python
Learn how to create several different types of visualizations to identify patterns, outliers, and correlations in your dataset
Learn how to visualize a highly dimensional dataset using principal component analysis (PCA)
By the end of this project, you will learn how to load and extract useful information from your dataset using Python, a free, open-source program that you can download. You will then learn how to clean your data set by removing unwanted whitespaces, columns containing several empty values, rows containing empty column values and duplicated row entries. Next, you will create various visualizations to identify patterns and outliers in your dataset, and visualize correlations between different columns. Lastly, you will learn how to visualize a highly dimensional dataset using principal component analysis (PCA). These steps are part of exploratory data analysis that you will need to carry out for any data science project to help you understand your dataset. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:
Load a dataset and extract basic information using Python
Learn various ways to clean your dataset
Visualize patterns and outliers that may be present in your dataset
Calculate and visualize the correlation between different numeric columns
Cluster your dataset to identify similar groups
Visualize your dataset using principal component analysis (PCA)
Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.
На разделенном экране видео преподаватель предоставляет пошаговые
it was a nice experience to learn again the some of the python analysis
Что я получу, приобретя проект с рекомендациями?
Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.
Доступны ли проекты с консультациями на ПК и мобильных устройствах?
Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.
Какие преподаватели ведут проекты с рекомендациями?
Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.
Можно ли скачать работу из уже завершенного проекта с рекомендациями?
Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.
Какие правила возврата средств?
Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.
Можно ли получить финансовую помощь?
Финансовая помощь недоступна для проектов с рекомендациями.
Можно ли прослушать проект с рекомендациями и посмотреть видео бесплатно?
Прослушивание недоступно для проектов с консультациями.
Какие предварительные знания требуются для работы над проектом с рекомендациями?
В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.
Можно ли выполнить этот проект с рекомендациями в веб-браузере, не устанавливая специальное ПО?
Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.
Как организована учеба на проектах с рекомендациями?
Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.
Остались вопросы? Посетите Центр поддержки учащихся.