Detecting COVID-19 with Chest X-Ray using PyTorch
Оценки: 312

10 293 уже зарегистрированы
Create custom Dataset and DataLoader in PyTorch
Train a ResNet-18 model in PyTorch to perform Image Classification
Оценки: 312
10 293 уже зарегистрированы
Create custom Dataset and DataLoader in PyTorch
Train a ResNet-18 model in PyTorch to perform Image Classification
In this 2-hour long guided project, we will use a ResNet-18 model and train it on a COVID-19 Radiography dataset. This dataset has nearly 3000 Chest X-Ray scans which are categorized in three classes - Normal, Viral Pneumonia and COVID-19. Our objective in this project is to create an image classification model that can predict Chest X-Ray scans that belong to one of the three classes with a reasonably high accuracy. Please note that this dataset, and the model that we train in the project, can not be used to diagnose COVID-19 or Viral Pneumonia. We are only using this data for educational purpose. Before you attempt this project, you should be familiar with programming in Python. You should also have a theoretical understanding of Convolutional Neural Networks, and optimization techniques such as gradient descent. This is a hands on, practical project that focuses primarily on implementation, and not on the theory behind Convolutional Neural Networks. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Deep Learning
Machine Learning
Statistical Classification
Medical Imaging
pytorch
На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:
Introduction
Importing Libraries
Creating Custom Dataset
Image Transformations
Prepare DataLoader
Data Visualization
Creating the Model
Training the Model
Final Results
Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.
На разделенном экране видео преподаватель предоставляет пошаговые
от партнера KO
5 окт. 2020 г.Excellent course.
My special thanks goes to Coursera and course supervisor
от партнера II
22 авг. 2020 г.Lecturer needs to let students know how to access dataset and code from in the beginning of the video lecture. It was hard to find code/ data download website
от партнера AM
4 окт. 2020 г.KUDOS TO THE INSTRUCTOR FOR A COMPREHENSIVE GUIDED MODULE.
от партнера TS
27 авг. 2020 г.It's a nice project, but I think more explanation about the concepts (ex- imagenet dataset, restnet18 model, etc.) must be provided to make the understanding more clearer.
Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.
Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.
Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.
Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.
Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.
Финансовая помощь недоступна для проектов с рекомендациями.
Прослушивание недоступно для проектов с консультациями.
В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.
Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.
Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.
Остались вопросы? Посетите Центр поддержки учащихся.