Build a Machine Learning Image Classifier with Python

Build your own image classifier using Python code
Preprocess and normalize that data for training
Train and test your model on your own sample image
Build your own image classifier using Python code
Preprocess and normalize that data for training
Train and test your model on your own sample image
In this 1-hour long project-based course, you will learn how to build your own Machine Learning Image Classifier using Python and Colab. You will be able to easily load the data, preview it, process and normalize it, then train and test your model! I hope you enjoy the experience! Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Computer Vision
Machine Learning
Deep Learning
На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:
Task 1 : you will get an overview of Colaboratory and you will have gotten familiar with how to access and set up the environment for this course. then preview what the finished project looks like.
Task 2: you will have begun the process of building the image classifier using available data. You will learn how to load data, preview the data and its shape and how to process it for training.
By the end of Task 3, you will have completed preprocessing and normalized your loaded data.
By the end of Task 4, you will have setup the Keras model architecture, trained and evaluated your model.
By the end of Task 5, you will have tested your trained model on the test dataset and also on your own choice image.
Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.
На разделенном экране видео преподаватель предоставляет пошаговые
Приобретая проект с консультациями, вы получаете все необходимое для его выполнения, включая браузерный доступ к рабочему столу, содержащему папки и программы для начала работы, а также пошаговые видеоинструкции от отраслевого эксперта.
Поскольку ваше рабочее пространство включает облачный рабочий стол, рассчитанный на ноутбук или ПК, проекты с консультациями недоступны на мобильном устройстве.
Преподаватели, ведущие проект с рекомендациями, — это отраслевые эксперты с навыками, инструментами и пониманием темы, которые хотят разделить свои знания с миллионами учащихся по всему миру.
Вы можете скачать и сохранить любой из созданных файлов своего проекта с рекомендациями. Для этого воспользуйтесь функцией "Обозреватель файлов" на облачном рабочем столе.
Средства за проекты с рекомендациями не возвращаются. Ознакомьтесь с полным текстом нашей политики возврата средств.
Финансовая помощь недоступна для проектов с рекомендациями.
Прослушивание недоступно для проектов с консультациями.
В верхней части страницы вы можете нажать уровень опыта для этого проекта с консультациями, чтобы просмотреть предварительные требования к знаниями. Преподаватель проведет вас пошагово по каждому уровню проекта с консультациями.
Да, все необходимое для завершения проекта с рекомендациями будет доступно на облачном рабочем столе. Вы сможете открыть этот рабочий стол в браузере.
Вы научитесь выполнять задания в режиме разделенного экрана непосредственно в браузере. В левой части экрана можно выполнять задания в своем рабочем пространстве. В правой части экрана можно просматривать пошаговые инструкции преподавателя по работе с проектом.
Остались вопросы? Посетите Центр поддержки учащихся.