Autoencoders para reducir la dimensionalidad y el ruido

от партнера
Coursera Project Network
В этом Проект с консультациями вы:

Entrenarás y optimizarás Autoencoders

Utilizarás los Autoencoders para reducir la dimensionalidad de los datos

Aprenderás a eliminar el ruido en el procesamiento de imágenes mediante los Autoencoders

Clock2 horas
BeginnerНачинающий
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsИспанский
LaptopТолько для ПК

En este curso aprenderemos a entrenar y optimizar los Autoencoders. También aprenderemos a como aplicar estos Autoencoders para reducir la dimensionalidad de los datos y eliminar el ruido de las imágenes.

Навыки, которые вы получите

  • Tratamiento de imagenes
  • Deep Learning
  • Autoencoder
  • Reducción de dimensionalidad
  • keras

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Introducción a los Autoencoders

  2. Arquitectura de los Autoencoders

  3. Reducción de dimensionalidad con Autoencoders

  4. Ejercicio práctico de reducción de dimensionalidad

  5. Fundamentos de procesamiento de imágenes con Deep learning

  6. Eliminación de ruido en imágenes con Autoencoders. Parte I

  7. Eliminación de ruido en imágenes con Autoencoders. Parte II

  8. Ejercicio práctico de eliminación del ruido con Autoencoders

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.