Analyze Survey Data using Principal Component Analysis

4.0
звезд
Оценки: 35
от партнера
Coursera Project Network
1 507 уже зарегистрированы
В этом Бесплатный проект с консультациями вы:

Understand the fundamentals of Principal Component Analysis (PCA) and identify opportunities to combine variables.

Conduct correlation testing with various sets of variables in Google Sheets.

Combine highly correlated variables, visualize the data, and consider next steps in Google Sheets.

Продемонстрируйте этот практический опыт на собеседовании

Clock2 hours
AdvancedПродвинутые функции
CloudЗагрузка не требуется
VideoВидео на разделенном экране
Comment DotsАнглийский
LaptopТолько для ПК

Survey data sets are often deceptively complex because surveys collect a wide variety of data covering a wide variety of topics and experiences. To further the complexity of survey data, the respondents answering the questions come from a wide variety of backgrounds and stages in their customer journey. It is reasonable that it would be a challenge to boil down survey data into actionable insights because it can be deceptively complex. With large sets of data, Principal Component Analysis or PCA is a useful tool that reduces and transforms variables to a leaner form that allows for a speedier analysis. In this project you will gain hands-on experience with the principles of Principal Component Analysis using survey data. To do this you will work in the free-to-use spreadsheet software Google Sheets. By the end of this project, you will be able to confidently apply Principal Component Analysis concepts to transform large sets of variables into a leaner set of data that still contains the most relevant information. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Требования

Familiarity with spreadsheet software, factor analysis, and correlation testing. "Design a Factor Analysis Using Survey Data" is recommended.

Навыки, которые вы получите

  • Survey Methodology
  • Mining Insights
  • Business Insights
  • Data Analysis
  • Principal Component Analysis (PCA)

Будете учиться пошагово

На видео, которое откроется рядом с рабочей областью, преподаватель объяснит эти шаги:

  1. Review the fundamentals of Principal Component Analysis (PCA) and combining variables.

  2. Identify use cases for PCA and refine variable selection for the project.

  3. Access Google Sheets, import survey data, and examine variables that are likely correlated.

  4. Identify variables of interest and conduct a correlation test.

  5. Compare results and review the process of correlation testing.

  6. Combine highly correlated variables, create a visualization, and consider next steps.

  7. Access the ClustVis webtool for visualizing clustering and multivariate data.

  8. Build a PCA model with Heart data and run a Principal Component Analysis

  9. Compare results and review PCA with multivariate data from multiple sources and interpret the findings in ClustVis.

Как устроены проекты с консультациями

Ваше рабочее пространство — это облачный рабочий стол в браузере. Ничего не нужно загружать.

На разделенном экране видео преподаватель предоставляет пошаговые

Преподаватели

Рецензии

Лучшие отзывы о курсе ANALYZE SURVEY DATA USING PRINCIPAL COMPONENT ANALYSIS

Посмотреть все отзывы

Часто задаваемые вопросы

Часто задаваемые вопросы

Остались вопросы? Посетите Центр поддержки учащихся.