Regularization: The Problem of Overfitting

video-placeholder
Loading...
Просмотреть программу курса

Получаемые навыки

Algorithms, Expectation–Maximization (EM) Algorithm, Graphical Model, Markov Random Field

Рецензии

4.6 (оценок: 294)

  • 5 stars
    71,42 %
  • 4 stars
    19,72 %
  • 3 stars
    5,44 %
  • 2 stars
    2,72 %
  • 1 star
    0,68 %

ZZ

13 февр. 2017 г.

Great course! Very informative course videos and challenging yet rewarding programming assignments. Hope that the mentors can be more helpful in timely responding for questions.

MV

29 апр. 2020 г.

Great course, especially the programming assignments. Textbook is pretty much necessary for some quizzes, definitely for the final one.

Из урока

Review of Machine Learning Concepts from Prof. Andrew Ng's Machine Learning Class (Optional)

This module contains some basic concepts from the general framework of machine learning, taken from Professor Andrew Ng's Stanford class offered on Coursera. Many of these concepts are highly relevant to the problems we'll tackle in this course.

Преподаватели

  • Placeholder

    Daphne Koller

    Professor

Ознакомьтесь с нашим каталогом

Присоединяйтесь бесплатно и получайте персонализированные рекомендации, обновления и предложения.