Variable Elimination Algorithm

Loading...
Просмотреть программу курса

Получаемые навыки

Inference, Gibbs Sampling, Markov Chain Monte Carlo (MCMC), Belief Propagation

Рецензии

4.6 (оценок: 445)
  • 5 stars
    70.11%
  • 4 stars
    22.02%
  • 3 stars
    5.39%
  • 2 stars
    1.12%
  • 1 star
    1.34%
LL

Mar 12, 2017

Thanks a lot for professor D.K.'s great course for PGM inference part. Really a very good starting point for PGM model and preparation for learning part.

YP

May 29, 2017

I learned pretty much from this course. It answered my quandaries from the representation course, and as well deepened my understanding of PGM.

Из урока
Variable Elimination
This module presents the simplest algorithm for exact inference in graphical models: variable elimination. We describe the algorithm, and analyze its complexity in terms of properties of the graph structure.

Преподаватели

  • Placeholder

    Daphne Koller

    Professor

Ознакомьтесь с нашим каталогом

Присоединяйтесь бесплатно и получайте персонализированные рекомендации, обновления и предложения.