Properties of word embeddings

Loading...
Просмотреть программу курса

Получаемые навыки

Recurrent Neural Network, Artificial Neural Network, Deep Learning, Long Short-Term Memory (ISTM)

Рецензии

4.8 (оценок: 15,932)
  • 5 stars
    13,388 ratings
  • 4 stars
    2,048 ratings
  • 3 stars
    385 ratings
  • 2 stars
    74 ratings
  • 1 star
    37 ratings
NM

Feb 21, 2018

Hope can elaborate the backpropagation of RNN much more. BP through time is a bit tricky though we do not need to think about it during implementation using most of existing deep learning frameworks.

SD

Sep 28, 2018

Great hands on instruction on how RNNs work and how they are used to solve real problems. It was particularly useful to use Conv1D, Bidirectional and Attention layers into RNNs and see how they work.

Из урока
Natural Language Processing & Word Embeddings

Преподаватели

  • Andrew Ng

    Andrew Ng

    CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain
  • Head Teaching Assistant - Kian Katanforoosh

    Head Teaching Assistant - Kian Katanforoosh

    Lecturer of Computer Science at Stanford University, deeplearning.ai, Ecole CentraleSupelec
  • Teaching Assistant - Younes Bensouda Mourri

    Teaching Assistant - Younes Bensouda Mourri

    Mathematical & Computational Sciences, Stanford University, deeplearning.ai

Ознакомьтесь с нашим каталогом

Присоединяйтесь бесплатно и получайте персонализированные рекомендации, обновления и предложения.