Error analysis in beam search

Loading...
Просмотреть программу курса

Получаемые навыки

Natural Language Processing, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Recurrent Neural Network, Attention Models

Рецензии

4.8 (оценок: 26,201)
  • 5 stars
    83.65%
  • 4 stars
    13.12%
  • 3 stars
    2.50%
  • 2 stars
    0.46%
  • 1 star
    0.24%
SD
27 сент. 2018 г.

Great hands on instruction on how RNNs work and how they are used to solve real problems. It was particularly useful to use Conv1D, Bidirectional and Attention layers into RNNs and see how they work.

MH
21 апр. 2020 г.

Very good. I have no complaints. I though instruction was very clear. Assignments were very helpful and challenging enough that I learned something, but not so challenging that I got stuck too often.

Из урока
Sequence models & Attention mechanism

Преподаватели

  • Placeholder

    Andrew Ng

    Instructor
  • Placeholder

    Kian Katanforoosh

    Curriculum Developer
  • Placeholder

    Younes Bensouda Mourri

    Curriculum developer

Ознакомьтесь с нашим каталогом

Присоединяйтесь бесплатно и получайте персонализированные рекомендации, обновления и предложения.