Gradient Descent in Practice II - Learning Rate

Loading...
Просмотреть программу курса

Получаемые навыки

Logistic Regression, Artificial Neural Network, Machine Learning (ML) Algorithms, Machine Learning

Рецензии

4.9 (оценок: 108,097)
  • 5 stars
    100,163 ratings
  • 4 stars
    7,319 ratings
  • 3 stars
    455 ratings
  • 2 stars
    77 ratings
  • 1 star
    83 ratings
PT

Sep 01, 2018

Sub title should be corrected. Since I'm not that good in English but I know when there're mis-traslated or wrong sub title. If you fix this problems , I thin it helps many students a lot. Thanks!!!!!

OK

Apr 18, 2018

You need to know, what do you want to get out of this course. It gives you a lot of information, but be prepared to work hard with linear algeabra and make efforts to compute things in Mathlab/Octave.

Из урока
Linear Regression with Multiple Variables
What if your input has more than one value? In this module, we show how linear regression can be extended to accommodate multiple input features. We also discuss best practices for implementing linear regression.

Преподаватели

  • Andrew Ng

    Andrew Ng

    CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain

Ознакомьтесь с нашим каталогом

Присоединяйтесь бесплатно и получайте персонализированные рекомендации, обновления и предложения.