Choosing the Number of Principal Components

video-placeholder
Loading...
Просмотреть программу курса

Получаемые навыки

Logistic Regression, Artificial Neural Network, Machine Learning (ML) Algorithms, Machine Learning

Рецензии

4.9 (160,840 ratings)
  • 5 stars
    92,41 %
  • 4 stars
    6,90 %
  • 3 stars
    0,46 %
  • 2 stars
    0,08 %
  • 1 star
    0,12 %

AB

30 авг. 2020 г.

Filled StarFilled StarFilled StarFilled StarFilled Star

A brilliant sequence of topics and fundamentals to get a stronghold on ML . The learnings I obtained from this course will always be my guiding factor in working through the projects in my life ahead.

AA

10 нояб. 2017 г.

Filled StarFilled StarFilled StarFilled StarFilled Star

Great teaching style , Presentation is lucid, Assignments are at right difficulty level for the beginners to get an under the hood understanding without getting bogged down by the superfluous details.

Из урока

Dimensionality Reduction

In this module, we introduce Principal Components Analysis, and show how it can be used for data compression to speed up learning algorithms as well as for visualizations of complex datasets.

Преподаватели

  • Placeholder

    Andrew Ng

    Instructor

Ознакомьтесь с нашим каталогом

Присоединяйтесь бесплатно и получайте персонализированные рекомендации, обновления и предложения.