Статистическая обработка данных и визуализация результатов анализа - это неизбежный этап работы с данными, полученными в различных областях естественных наук, в социологии, психологии или экономике. В этом курсе мы подробно разберем основы статистики и познакомимся с основами языка статистического программирования R. Мы научим вас гибко использовать средства визуализации (диаграммы, графики и т.п.), чтобы сделать результаты анализа максимально доступными и понятными. Вы научитесь рассчитывать основные описательные статистики: медиану и квантили, среднее и стандартное отклонение. Вы познакомитесь с принципами использования теоретических распределений статистик для построения доверительных интервалов и тестирования гипотез (на примере t-критерия). Наконец, мы обсудим сложности, возникающие при множественном тестировании гипотез и научим вас преодолевать их.
от партнера
Об этом курсе
Приобретаемые навыки
от партнера

Санкт-Петербургский государственный университет
Санкт-Петербургский государственный университет (СПбГУ) — старейший вуз России, основанный в 1724 году. Университет сегодня — научный, образовательный и культурный центр мирового значения, неизменно входящий во все международные рейтинги вузов. В номинации взаимодействие с работодателями QS Graduate Employability 2018 СПбГУ занимает 20 место среди 400 ведущих вузов мира и является лучшим в России.
Программа курса: что вы изучите
Знакомство с R
В этом модуле мы начнем знакомство с языком статистического программирования R - основным инструментом, который мы будем использовать для анализа данных. Вы узнаете, как установить и настроить R и RStudio и как получить помощь. К концу модуля вы сможете использовать операторы и функции R для работы с числами и векторами.
Работа с данными
Существует множество способов представления и хранения данных в R. После обсуждения того, какие бывают типы данных, мы обратимся к методам их препарирования. Вы научитесь разными способами извлекать части векторов и таблиц и использовать для вычислений только нужные фрагменты данных. Для работы мы будем использовать не только данные, уже встроенные в R, но и научим вас открывать данные из внешних источников на примере .xlsx или .csv файлов. Мы обсудим принципы организации табличных данных для удобства машинного анализа (опрятные данные, tidy data).
Графики с использованием ggplot2
Графическое представление данных позволяет получить максимум информации за минимальный промежуток времени - часто это лучший способ представить данные в отчете. В этом модуле вы научитесь строить графики разной степени сложности, пользуясь принципами грамматики графиков (средствами пакета ggplot2). Кроме того, мы поговорим о том, как создавать в R автоматизированные отчеты с помощью rmarkdown и knitr.
Описательная статистика
Чаще всего, анализируя данные, мы имеем дело с выборками, но хотим делать выводы о свойствах генеральной совокупности, из которой они взяты. Описание выборок - это первый этап анализа данных. В этом модуле вы познакомитесь с основными описательными статистиками и их свойствами (медиана, квантили, среднее, дисперсия, стандартное отклонение). Мы обсудим свойства нормального и t- распределения и научимся с их помощью вычислять вероятности. Наконец, пользуясь центральной предельной теоремой, вы научитесь строить доверительные интервалы к оценкам средних.
Рецензии
Лучшие отзывы о курсе ЗНАКОМСТВО С R И БАЗОВАЯ СТАТИСТИКА
Очень подробный курс, который приходится внимательно изучать, чтобы успешно сдавать задания на степике (:. Местами "дотошно", но все четко и понятно. Спасибо преподавателям за такой полезный курс!
Отличный курс! Преподаватели все очень подробно и понятно объясняют.
Отличный курс, который знакомит с основами R и статистикой.
Специализация Просто о статистике (с использованием R): общие сведения
Специализация “Просто о статистике” познакомит вас с основами прикладного анализа данных. Здесь не будет сложной математики, зато мы разберем на практике множество примеров.

Часто задаваемые вопросы
Когда я получу доступ к лекциям и заданиям?
Что я получу, оформив подписку на специализацию?
Is financial aid available?
Остались вопросы? Посетите Центр поддержки учащихся.