Chevron Left
Вернуться к Введение в машинное обучение

Отзывы учащихся о курсе Введение в машинное обучение от партнера Национальный исследовательский университет "Высшая школа экономики"

4.6
звезд
Оценки: 2,293
Рецензии: 464

О курсе

Не так давно получил распространение термин «большие данные», обозначивший новую прикладную область — поиск способов автоматического быстрого анализа огромных объёмов разнородной информации. Наука о больших данных ещё только оформляется, но уже сейчас она очень востребована — и в будущем будет востребована только больше. С её помощью можно решать невероятные задачи: оценивать состояние печени по кардиограмме, предсказывать зарплату по описанию вакансии, предлагать пользователю музыку на основании его анкеты в интернете. Большими данными может оказаться что угодно: результаты научных экспериментов, логи банковских транзакций, метеорологические наблюдения, профили в социальных сетях — словом, всё, что может быть полезно проанализировать. Самым перспективным подходом к анализу больших данных считается применение машинного обучения — набора методов, благодаря которым компьютер может находить в массивах изначально неизвестные взаимосвязи и закономерности. На факультете компьютерных наук ВШЭ и в Школе анализа данных есть люди, активно использующие машинное обучение и разрабатывающие новые подходы к нему. Именно они — преподаватели этого курса. Вы изучите основные типы задач, решаемых с помощью машинного обучения — в основном речь пойдёт о классификации, регрессии и кластеризации. Узнаете об основных методах машинного обучения и их особенностях, научитесь оценивать качество моделей — и решать, подходит ли модель для решения конкретной задачи. Наконец, познакомитесь с современными библиотеками, в которых реализованы обсуждаемые модели и методы оценки их качества. Для работы мы будем использовать реальные данные из реальных задач. Краткая программа курса: Неделя 1. Введение. Примеры задач. Логические методы: решающие деревья и решающие леса. Неделя 2. Метрические методы классификации. Линейные методы, стохастический градиент. Неделя 3. Метод опорных векторов (SVM). Логистическая регрессия. Метрики качества классификации. Неделя 4. Линейная регрессия. Понижение размерности, метод главных компонент. Неделя 5. Композиции алгоритмов, градиентный бустинг. Нейронные сети. Неделя 6. Кластеризация и визуализация. Частичное обучение. Неделя 7. Прикладные задачи анализа данных: постановки и методы решения. Слушателю нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования. Очень желательно знать Python. Задания рассчитаны на использование этого языка и его библиотек numpy, pandas и scikit-learn. Чтобы успешно завершить курс, нужно набрать проходную сумму баллов за тесты и практические задания, а также выполнить финальный проект, посвящённый решению прикладной задачи анализа данных. Мы уверены, что этот курс будет полезен каждому, кто хочет постичь искусство предсказательного моделирования и освоить интеллектуальный анализ данных. Появились технические трудности? Обращайтесь на адрес: coursera@hse.ru...

Лучшие рецензии

AL

Sep 25, 2018

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

DD

Feb 10, 2016

Спасибо за курс. Хороший материал. Отличные задания.\n\nЕсть желание пройти курс "Практическое машинное обучение" с большим количеством примеров и практик от авторов этого курса.

Фильтр по:

76–100 из 448 отзывов о курсе Введение в машинное обучение

автор: Лазарев А В

Oct 26, 2017

Спасибо, курс дает навыки python (pandas, sklearn), но если не знакомы с python вообще, то лучше пройдите курс сначала в SoloLearn он займет неделю, но сильно поможет.

Методы машинного обучения стали понятны и хочется учиться дальше.

автор: Timur K

May 14, 2019

Сложно понимать теоретическую часть курса (много формул, сложная нотация), практическая часть особых сложностей не вызвала. Последнее задание по времени заняло полный день, хотя в описании стоит оценка необходимого времени 2 часа.

автор: Darya L

Dec 14, 2017

Немного не хватает математики: объяснения всех упомянутых в курсе формул. Тем не менее, курс дает отличное базовое представление о машинном обучении, а большое количество практических заданий помогают чувствовать себя уверенней.

автор: Николай

Apr 24, 2017

Прекрасно. Сложно. Поначалу тяжело, потом как-то втягиваешься. Для полного понимания всего материала надо быть сильно продвинутым в математике. Задания иногда действительно не совсем соответствуют теории, это слабое место курса.

автор: Милютин В В

May 02, 2020

Отличный курс для начинающих. Курс раскрывает все основные аспекты работы с данными и рассматривает как работают модели машинного обучения изнутри с математической точки зрения. Буду рекомендовать Ваш курс. Спасибо за Ваш труд.

автор: Никифоров В И

Jun 06, 2017

Отличный курс. На входе имел приблизительные знания о программировании в Python и его библиотеках машинного обучения. На выходе сложилось целостное понимание предмета. Хотел бы подробнее узнать о нейронных сетях и их обучении.

автор: Artem B

Oct 23, 2016

Хороший курс для начинающих. Рассказывается все самое важное без перегрузки. Хорошие задачи для самостоятельного решения.

Хотелось бы решать задачи на кластеризацию, нейронные сети, в том числе глубокие, но этого в курсе нет.

автор: Leonid S

May 18, 2016

Хорошо структурирован, просто воспринимать информацию. Можно сделать больше практических заданий, на закрепление материала; добавить задания без общих инструкций.

Не удобно сдавать задания(из-за форматирования файла в конце).

автор: Boris

Feb 15, 2017

Хороший курс с хорошими заданиями. Но мне как человека который не встречается с математикой каждый день немного показался сложноватым материал лекций и для того чтобы уловить некоторые вещи приходилось долго медитировать.

автор: Гридасов И И

Jul 26, 2017

Отличный курс, иногда сложно из-за слишком формальной постановки задач, но практические задания разбавляют избыточную формальность и на выходе мы имеет, математический фундамент в теории и разработанные руки на практике)

автор: Маханьков Е И

Jun 02, 2019

Достаточно хороший курс который дает математическое обоснование изучаемым методам машинного обучения. Курс построен так: теория - отдельно, практика - отдельно. Чтобы выполнять практические задания надо владеть Python.

автор: Филипьев А В

Feb 08, 2018

Курс сильно изменился с последнего моего прохождения. Стал более понятным и появились дополнительные материалы. Плюсом сыграло, что Python стал гораздо более удобным, нет больших проблем с использованием 3-ей версии.

автор: Fabio M S

Feb 22, 2016

Очень хороший курс! Трудные и сложные задания, так как и есть настоящие задачи в области анализа данных. Но учители всё ясно объясняют, только надо хорошо мозгами работать для того, чтобы успевать все уроки пройти.

автор: Semjon M

Mar 16, 2016

Мне очень понравился курс, огромное спасибо преподавателям, Яндексу и всем, кто участвовал в подготовке курса! Отдельная благодарность за математику - очень приятно размять мозг спустя 10 лет после университета.

автор: Мезенцев Н В

Feb 13, 2019

Очень интересно, порой бывает сложно, чувствуется некая недосказанность, поэтому мне приходится параллельно смотреть на ютубе Курс «Машинное обучение» 2014, там более подробно описывается теория данного курса.

автор: Sergey K

Jul 25, 2018

Отличный курс для первого знакомства с машинным обучением. Хороший баланс практических заданий и теории. Теория подается сбалансированно - не углубляясь в детали, но все, что необходимо знать в контексте темы.

автор: Artem A

Dec 04, 2019

Интересный обзорный курс, простой и весьма поверхностный. Рекомендую к прохождению как новичкам в ML, а также просто желающим расширить свой кругозор и познакомиться с популярными методами машинного обучения.

автор: Sergey Y

Nov 19, 2018

Очень хороший курс для стартового уровня. По окончании курса обретаемого уровня хватает для участия в некоторых соревнованиях Kaggle. Хорошие преподаватели, спокойный темп - я успевал за выходные. Рекомендую!

автор: Festa Y Y

Sep 13, 2018

Отличный курс! Было очень интересно слушать лекции и применять новые знания сразу на практике. Буду рекомендовать этот курс знакомым и коллегам, которые также как и я делают первые шаги в машинном обучении.

автор: maximus

Nov 21, 2017

Хороший начальный курс. Позволяет освоить и изучить основные методы машинного обучения. Преподается на хорошем математическом уровне, без ненужных упрощений. В общем остались только приятные впечатления.

автор: Alexey

Jun 15, 2016

Хороший курс без лишнего. Некоторые методы, предлагаемые в заданиях не оптимальны с точки зрения затрат ресурсов компьютера и времени программиста, но, надеюсь, с новыми сессиями будет развитие курса.

автор: Stan S

Mar 06, 2016

Отличный курс, на мой взгляд. Напомнил институт, когда надо самому думать и делать в 80%, а не просто monkey see, monkey do. Кто хочет чему-то научиться должен сам хотеть и уметь учиться. Спасибо.

автор: Anna D

May 01, 2020

Отличный курс, дает обзор основных алгоритмов и областей их применения. Хорошо сбалансированы сложность и интересность заданий - позволяет новичкам пройти курс не теряя интереса к теме.

автор: Aleksandra L

Sep 25, 2018

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

автор: Багринцев А В

Mar 04, 2016

Интересная подача материала, понятные пояснения, логичная последовательность нарастания сложности курса. Как новичок, не чувствую ни недоумений, ни больших замешательств. Спасибо!