Chevron Left
Вернуться к введение в машинное обучение

Отзывы учащихся о курсе введение в машинное обучение от партнера НИУ ВШЭ

4.7
звезд
Оценки: 2,410
Рецензии: 494

О курсе

Не так давно получил распространение термин «большие данные», обозначивший новую прикладную область — поиск способов автоматического быстрого анализа огромных объёмов разнородной информации. Наука о больших данных ещё только оформляется, но уже сейчас она очень востребована — и в будущем будет востребована только больше. С её помощью можно решать невероятные задачи: оценивать состояние печени по кардиограмме, предсказывать зарплату по описанию вакансии, предлагать пользователю музыку на основании его анкеты в интернете. Большими данными может оказаться что угодно: результаты научных экспериментов, логи банковских транзакций, метеорологические наблюдения, профили в социальных сетях — словом, всё, что может быть полезно проанализировать. Самым перспективным подходом к анализу больших данных считается применение машинного обучения — набора методов, благодаря которым компьютер может находить в массивах изначально неизвестные взаимосвязи и закономерности. На факультете компьютерных наук ВШЭ и в Школе анализа данных есть люди, активно использующие машинное обучение и разрабатывающие новые подходы к нему. Именно они — преподаватели этого курса. В онлайн курсе вы изучите основные типы задач, решаемых с помощью машинного обучения — в основном речь пойдёт о классификации, регрессии и кластеризации. Узнаете об основных методах машинного обучения и их особенностях, научитесь оценивать качество моделей — и решать, подходит ли модель для решения конкретной задачи. Наконец, познакомитесь с современными библиотеками, в которых реализованы обсуждаемые модели и методы оценки их качества. Для работы мы будем использовать реальные данные из реальных задач. Слушателю нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования на языке Python. Задания рассчитаны на использование этого языка и его библиотек numpy, pandas и scikit-learn. Чтобы успешно завершить курс, нужно набрать проходную сумму баллов за тесты и практические задания, а также выполнить финальный проект, посвящённый решению прикладной задачи анализа данных. Мы уверены, что этот курс будет полезен каждому, кто хочет постичь искусство предсказательного моделирования и освоить интеллектуальный анализ данных. Появились технические трудности? Обращайтесь на адрес: coursera@hse.ru...

Лучшие рецензии

AA
14 июня 2016 г.

Хороший курс без лишнего. Некоторые методы, предлагаемые в заданиях не оптимальны с точки зрения затрат ресурсов компьютера и времени программиста, но, надеюсь, с новыми сессиями будет развитие курса.

AL
24 сент. 2018 г.

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

Фильтр по:

426–450 из 478 отзывов о курсе введение в машинное обучение

автор: Anton R

30 янв. 2016 г.

Порог входа очень большой.

автор: Рыжов М С

14 февр. 2016 г.

Some problems with tasks.

автор: Сидоров К О

13 сент. 2020 г.

Не для новичков такое.

автор: Pavlov A

17 авг. 2016 г.

Good intro

автор: Alexey K

15 мар. 2017 г.

В целом не плохой курс, дает представление о машинном обучении. Охватывает много тем, один из немногих на русском языке. Очень понравился финальный проект на реальных данных. Большой недостаток курса проявляется еще до его начала - это неточное описание сложности, слишком мягкие требования к слушателям. Читаем: "нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования." На самом деле математика в курсе явно не для человека который просто "знает об основных понятиях", в этих понятиях надо хорошо разбираться, чтобы не возникло проблем с пониманием теоретической части. Базовых навыков программирования вам так же не хватит, придется осваиваить все на ходу.

Что еще не понравилось:

По теории - её очень много, но она вообще не используется в практических задания. В практике почти везде используются готовые библиотеки, использование которых возможно вообще без тех знаний, что даются в лекциях. Лекции читаются в типичной университетской манере, когда лектор уверен в достаточности знаний у аудитории, идет по материалу быстро, не вдаваясь в глубокие разъяснения. Именно слушать такие лекции смысла не много, с тем же успехом их можно было просто выложить в виде мини-учебника вместе со слайдами, эффект был бы тот же.

По практике - в лекциях не ни слова по практике на Python, выполняя практические задания придется ориентироваться только на не всегда полные текстовые описания и все время читать документацию по библиотекам языка (sklear, pandas, numpy). Из-за этого задания, оцененные на 3 часа выполнения, превращаются во все 9 часов, а по началу и более, пока вы не освоите язык и не накопите кодовую базу, куски из которой позже можно будет использовать повторно.

Если вы хорошо знаете высшую математику на уровне 2-3 курса технического вуза, вы не новичек в программирование, то этот курс для вас. Конечно, курс можно протий и так, но часть теории останется для вас загадкой, а на практику вы потратите в разы больше заявленного врмени.

автор: Pavel A

2 мар. 2016 г.

Курс новый, и хотя очень интересный, весьма сырой. Не считая всяких мелких технических ошибок, которые авторы исправляют достаточно быстро, всё даётся совсем по верхам. Без толкового описания что к чему и зачем. Примеров явно не достаточно. А практические задания весьма далеки от теории. Не в том смысле что они не о том, а скорее в них нужно выполнить работу, делая системные вызовы некоторых библиотек питона. При этом прямой связи почему эти вызовы, а не другие, почему так, и что там должно происходить либо не повествуется, либо умалчивается :)

Но я рад что прошёл и закончил этот курс. Рад также что "пришлось" познакомиться с Python (моё мнение о нём немного улучшилось).

автор: Vladimir L

4 февр. 2018 г.

Сначала было интересно... Но потом, - встречаются ошибки в тексте. Темы начинаются с видео, потом переходят в загруженный отдельно PDF. Какая-то сборная солянка. В видео идут общие теоретические знания - аля как важен Machine Learning в общих фразах, а чтобы решить задачу предлагается изучить ссылки на другие курсы для работы с Python Notebook и pandas - зачем тогда ваш курс если все приходиться самому изучать на английских сайтах?

Невозможно пройти простейшие тесты из-за ошибки в принятии правильного ответа. Сложные ответы были приняты. Система приема ответов не продумана по сравнению с другими курсами Coursera. Типичный Яндекс.

автор: Андрей П

23 июля 2019 г.

Курс должен называться "Введение в математические основы машинного обучения". Много сухой теории без примеров из реальной жизни. Да могу я теперь написать регрессию с нуля, только толку то? Зашел на kaggle взялся за титаник и понял, что я ничего не знаю о тех самых основах предобработки данных и их визуализации, выбора фич и их создания. Да конечно неплохо понимать, что происходит когда стучишь молотком по гвоздю, но все же думаю логично сначала научить правильно пользоваться молотком, а потом уже углубляться, чтобы можно было пилить собственные молотки.

автор: Баранов В М

23 сент. 2020 г.

Курс не для новичков. Вам здесь не будут всё разжевывать (объяснять формулы, приводить учебные примеры, учить писать код). Вы должны знать хотя бы про линейную регрессию, неплохой навык программирования на Python, язык запросов SQL в первом приближении, если вы не знакомы с pandas. Иначе вы на первых неделях просто сольетесь. Лично я, перед тем как начать этот курс, прошёл курсы "Основы программирования на Python" и "Эконометрика". Мне было не просто. Если хотите познать ML пробуйте, читайте статьи, смотрите видео. Старт вы получите. Успехов.

автор: Dmitry Y

12 мар. 2016 г.

Курс сыроват. Складывается ощущение, что делали его "на коленке" и в последний момент.

Материал очень интересный, но подан очень своеобразно.

Что ожидалось? Хотелось рассмотреть теорию, попробовать реализовать это на практике, и затем сравнить на реальной задаче свой велосипед и готовые пакеты. Что вышло - четко разделенная сухая теория и совершенно библиотеко-ориентированная практика.

автор: Semen K

25 мар. 2016 г.

не хватает глубины обзора материала, лекции Воронцова на сайте яндекс, кажутся гораздо подробнее, структурированнее и понятнее.

задания часто не согласуются с лекциями, без предварительных знаний python и scikitlearn не обойтись

скрипты проверки скриптов с ошибками(

осталось впечатление что курс очень сырой(

автор: Dmitriy S

4 авг. 2017 г.

Курс вполне неплох. Уровень преподавателей в соответствующей области высок, но название "Введение..." не соответствует содержимому, чтобы лучше понять нужно быть хорошо подкованным в математике, а также уже иметь представление об МЛ.

автор: Nikolay B

12 февр. 2016 г.

Лекции очень короткие и насыщенные, порой задумываешься над формулой, а пропустил уже 3 новых. Всет-ки есть какой-то лимит по времени воспринимания информации, нельзя все формулы уместить в 5 минут не потеряв часть аудитории

автор: Коротков В Е

18 июня 2019 г.

Много теории, при этом мало визуализации - не всегда понятно, что имеет в виду лектор. Совсем нет лекций с примерами решения схожих задач. Мало задач (в идеале должно быть 10от простых (на 10-20 минут) к сложным

автор: Drozhnikov A

6 февр. 2016 г.

Курс требует хорошего знания Python. В лекциях в основном теория без примеров с кучей формул. В практических модулях реализация метода средствами Python. Нюансы настройки метода не объясняются.

автор: Evgenii D

5 июня 2018 г.

На мой взгляд, в качестве начального обучения курс тяжеловат, более-менее понимаешь о чём идёт речь только к концу. Поэтому рекомендую для освежения просмотреть курс второй раз.

автор: Гаманец Р А

17 мар. 2019 г.

Вот смотрю я видео, и понимаю, что ничего не понимаю. А беру задания, выполняю, и начинаю понимать. Но главное не понимаю, а зачем нужна какая модель. А это очень грустно.

автор: Аминов А Ф

22 окт. 2020 г.

Лекции непонятные (кроме асперов). Практика неплохая, но несколько устаревшая - она написана на втором питоне, и копипаст формул часто выдает ошибку.

автор: Narek

20 мар. 2016 г.

Хорошие задание по практите. Теория конечно для продвинутых дается, но в целом какое представление о предмете появляется, но очень слабое.

автор: Victor A

3 июня 2020 г.

Что плохо:

Очень мало практики

Теория сильно оторвана от практики

По Нейросетям нет практики

Что хорошо:

Всё остальное

автор: Petr K

5 февр. 2016 г.

Need very strong skills and experience in Python. Also, some basic knowledge in ML also is necessary.

автор: Ustinov M

3 мая 2016 г.

Очень сухой стиль изложения. Почти ничего не рассказано о существенно используемом в курсе python.

автор: Andrei V

16 мар. 2016 г.

сырые практические задачи. мало примеров в лекциях, мало практики. слишком по-академически.

автор: Andrey T

14 мар. 2016 г.

very little relationship between lectures and assignments. was expected more practices

автор: Kirill S

1 окт. 2019 г.

Много формул, оторванных от практики, хотелось бы в видео больше практики