Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.
Очень познавательно. Понравилось. Интересные задачи. Хорошие обсуждения на форуме. Надо попотеть. Спасибо создателям. Больше примеров вместо сухой теории было бы вообще шикарно.
автор: Ivan K
•Хорошая обзорность курса. Очень компактное представление. Качественная запись лекций.
Есть проблемы с соблюдением компромисса между углублением в детали и обзорностью курса. Ведь по сути дела это вводный курс. Так большая часть математики не проходит в практических заданиях. И не понятно зачем тогда она нужна: все равно студенты забудут это сразу после лекции. Было бы лучше уделить внимание более глубокому сравнению тонкостей различных методов на практике.
автор: Alexander K
•Сам курс очень понравился, но немного смазывают картину задания - в курсе рассказывается про математическую основу, а в заданиях идет применение конкретного пакета на Python причем по большому счету в режиме черного ящика. Хотя в описании стоит "Очень желательно знать Python", по факту знать его строго необходимо для прохождения курса (вариант - учить в параллель, но тогда будьте готовы что у вас это будет занимать больше заявленных 3-5 часов в неделю)
автор: Maksim H
•Очень сложный курс из-за большой плотности материала. Очень мало времени и заданий на усвоение теории. И фактически теория оторвана от практики. Не чуствуется связи теории и практики. У меня не получилось их связать. Те вещи которые я знал, были понятны. То что не знал, ищу в других местах. В целом обучение напоминает техникум: главное не теория и ее понимание, а набор инструментов. С другой стороны похожих курсов на русском практически нет.
автор: Клочко А С
•Курс очень хороший, приходится ломать голову, чтобы понять теорию, по несколько раз пересматривать, но всё это понять нужно. С заданиями надо ломать голову ещё сильней, и они составлены ужасно, всегда приходится что-то делать не так, как в инструкции, чтобы выполнить его, встречаются противоречия, некоторые указания просто не работают на практике. Иногда без захода в обсуждения вообще непонятно как его делать.
автор: Nikita S
•Платформа курсеры это просто ужас. Все недостатки этого курса происходят именно от платформы. В самом курсе много полезных материалов. Слишком, на мой взгляд, много математической информации, которую можно обобщить до смысла параметров оптимизации и регуляризации и способа работы моделей. Получил много практических навыков работы с данными, с Ipython notebook и python вообще. Советую для начинающих.
автор: Александр
•Присоединяюсь к критиканам особенности подачи материалов курса.
Сначала думал, что мне не хватает математической подготовки, но когда прослушал ролик про прекрасно знакомую мне логистическую регрессию, понял, что проблема не в математической подготовке, а в стиле подачи лектора.
Спасибо за курс, но в будущем, пожалуйста, делайте объяснения более интуитивными, со схемами, объяснением сути и примерами.
автор: Улбутова В
•Формулировка заданий требует переделки. Для новичков нужно более точные формулировки, что нужно сделать и к какому ответу они должны прийти. Финальное задание нужно дать в двух вариантах: не все играют в Dota и трудно анализировать и обрабатывать данные не имя достаточного опыта. Также в финальном задании используется функция ix , от которой уже отказались - нужно переделать, а то путает
автор: Igor K
•Практическая часть в этом курсе отличная, а вот с теорией, на мой взгляд, получилось не очень. Может быть, я такой тупой, но мне показалось, что всё рассказывалось кратко и при этом очень обобщённо. И поэтому сложность была запредельная. ИМХО, для "введения" такой подход не самый лучший. Предпочёл бы смотреть "полные" варианты этих видео из курса ШАД, чтобы как-то разобраться в вопросе.
автор: Голубев К О
•Отличный курс с замечательными примерами, позволяющими на практике попробовать методы, о которых было рассказано в лекциях.
К недостаткам курса хотелось бы отнести излишнюю сжатость в изложении того, как требуется выполнять то или иное задание, из-за чего пришлось потратить немало времени, прежде чем многие из них стали работать правильно.
автор: Кирьян Я
•Слишком сложная и редко демонстрируемая на практике теория в лекциях, приходится тратить много времени сверх лекции на понимание материала в ней. Стоит выделить больше времени в лекции подходам, помогающим на практике понять, какие методы лучше применять и от чего это зависит, как разные методы по-разному решают конкретные кейсы и почему.
автор: Алексей А С
•Наверное хорош для ознакомления. Хотелось бы услышать какие технологии будут более востребованы в ближайшие годы. На что сделать упор. Без подглядывания в учебник математики трудно уловить мысль. Трудно связать лекцию с кучей математики с реализацией на алгоритмов на pyton. Возможно большая часть замечаний отпадет с опытом. Посмотрим...
автор: Yury K
•Отдельно теория и практика хороши. Но они не особо связаны.
В теоретической части я добавил бы еще больше наглядных примеров. В практической - более жизненные данные. Во многих примерах данные были синтетические.
И самое главное - не хватает "лабораторных работ", в которых инструктора показывали бы, как чем пользоваться.
автор: Сметанина Ю С
•Очень понравился курс, ничего не понимала раньше в машинном обучении, этот курс здорово помог, но была не очень доступная теория, не так легко было понимать все формулы, которые быстро переключались на слайдах, но практика была супер, прям интересные задания и как раз для новичка, спасибо всем организаторам :)
автор: Titov A
•Сухую математику, причем иногда очень нетривиальную, нужно разжевывать на примерах. Это хорошо получалось у Соколова. Что качается заданий: работа с sklearn очень полезна, но задания были бы еще полезнее, если бы в них нужно было бы реализовывать некоторые алгоритмы из лекций самостоятельно.
автор: Шведун И А
•Классный курс, море математики и объяснений, но это далеко не для новичков. Как минимум, проходящий этот курс человек должен хорошо представлять хотя бы на словах действия и особенности разных алгоритмов, а этот курс поможет понять данные методы глубже через математику.
автор: Vladimir I
•Хорошо подобраны задания (числовые, категориальные признаки, работа с текстом, и, даже, картинками).
Если дойти до конца, то должен сформироваться неплохой багаж примеров о том, как проводить обучение моделей. Так же можно прокачать навыки владения scikit-learn и pandas.
автор: Матиенко А П
•Больше всего на этом курсе мне понравилась то, что есть практика. Она очень важна и спасибо, что вы ее предоставили.
Видеоуроки было трудно освоить. Хотелось побольше примеров кода, чтобы лучше понимать.
А в целом, очень интересно и познавательно!
Спасибо!
автор: Низамова И А
•Мне кажется, что если бы лекции из последнего блока были в начале курса, лично мне было бы проще. Ну и вообще лекции довольно тяжело слушать, особенно сначала. Задания интересные, и понимание того, что нужно делать приходит уже после выполнения заданий.
автор: Александр Х
•Хороший курс, позволяет получить реальное представление об машинном обучении. Однако практическая часть выполнена не слишком хорошо, вам придется самостоятельно искать большую часть информации, которая необходима для решения практических заданий.
автор: Peter Z
•Курс хороший. Правда я не уверен, что он подходит для новичков. В лекции иногда слишком много формул, которых не объясняют на пальцах, может их лучше тогда совсем не давать. Хотелось бы, чтобы итоговый проект имел более практическое применение.
автор: Alex P
•Лекции дают хороший краткий обзор математики стоящей за алгоритмами. Домашние работы представляют список инструкций какой метод sklearn в каком порядке вызвать для того что бы получить осмысленный результат.
Финальное задание хорошо очень.
автор: Maksim A
•Отличный курс для знакомсква с миром машинного обучения! Но для того, чтобы хорошо понять материал и выполнить задания требует некоторых знаний программирования в Python и знания линейной алгебры. Рекомендую в качетсве начального курса.
автор: Федоров П А
•Неплохой курс, но теория не сильно соотносится с практикой. Не понимаю зачем было во 'введение' впихивать так много математики, которая только запутает новичка. Практические задачки интересные и не сложные, если знаком с Pandas и NumPy.
автор: Анатолий К
•Курс замечательный, мне очень понравился, просто из за того что ему уже около 5 лет, его видемо перестали обновлять, и некоторые данные устарели, но с помощью форума с этим можно справиться. В целом, курс замечательный, реально вводит
автор: Adel
•Фундаментальный курс, из-за этого многое тяжело воспринимается. Довольно мало наглядности. Тем не менее, материал доступен и понятен. Почти всегда. Заставит тех, кто не знает питон, выучить его и начать пользоваться.
Спасибо авторам!