Chevron Left
Вернуться к Поиск структуры в данных

Отзывы учащихся о курсе Поиск структуры в данных от партнера Московский физико-технический институт

4.7
звезд
Оценки: 1,418
Рецензии: 161

О курсе

В машинном обучении встречаются задачи, где нужно изучить структуру данных, найти в них скрытые взаимосвязи и закономерности. Например, нам может понадобиться описать каждого клиента банка с помощью меньшего количества переменных — для этого можно использовать методы понижения размерности, основанные на матричных разложениях. Такие методы пытаются сформировать новые признаки на основе старых, сохранив как можно больше информации в данных. Другим примером может служить задача тематического моделирования, в которой для набора текстов нужно построить модель, объясняющую процесс формирования этих текстов из небольшого количества тем. Такие задачи назвают обучением без учителя. В отличие от обучения с учителем, в них не предполагают восстановление зависимости между объектами и целевой переменной. Из этого курса вы узнаете об алгоритмах кластеризации данных, с помощью которых, например, можно искать группы схожих клиентов мобильного оператора. Вы научитесь строить матричные разложения и решать задачу тематического моделирования, понижать размерность данных, искать аномалии и визуализировать многомерные данные. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

Лучшие рецензии

PK
3 мая 2018 г.

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

AA
8 янв. 2017 г.

Интересный курс, замечательные преподаватели. Есть моменты когда лекция довольно сложная, а тест простой, это оставляет тревожное ощущение недоученности :)

Фильтр по:

101–125 из 155 отзывов о курсе Поиск структуры в данных

автор: Николай М

2 июля 2019 г.

.

автор: Sergey

19 мар. 2019 г.

Good course. Outstanding choice of topics. The most prominent techniques for clustering are covered in an easy-to-read way. I especially enjoyed the last week's theory on processing texts. It's awesome that the authors have included the references for further reading; I've downloaded those, and now I'm looking forward to read it soon.

As usual for this set of courses, I have mixed feelings with regard to the programming assignments. From those, I mostly mastered installing various versions of Python packages. On the other hand, it can be viewed as a nice hands-on training in using the built-in functions for clustering purposes, and running some general Python routines, such as list comprehension etc. This way, it totally fits my personal goals, and I'm moving on to the next course.

автор: Пономарев М А

15 авг. 2019 г.

Курс хороший, но многие материалы несколько устарели, приходится ковыряться в обсуждениях для решения проблем которые не должны возникать при решении заданий. Устаревшие библиотеки, ответы вычисленные с использованием более свежих версий не принимаются, проблемы с установкой старых версий и тд. Да и питон 2й версии прекратит поддержку к концу года. То, что кто то из составителей привык использовать в работе 2ю версию не означает что студентам следует изучать материал на ее примере, в скором времени им, с большей вероятностью, пригодится именно 3я.Стоило бы обновить задания под актуальные версии, сами лекции актуальность не теряют.

автор: Окольнов Ю В

23 июня 2018 г.

Интересный курс по теме, которая (я надеюсь) будет полезна в практической работе.Преподаватели хорошие, но иногда было видно, что либо они недостаточно потренировались на камеру, либо стеснялись. Т.е. словесная подача была недостаточно гладкой. Это мешает сфокусироваться и внимать.Последнее задание оказалось необязательным, и я уже не узнаю - проверит ли его кто-нибудь хоть когда-нибудь :)Предпоследнее задание было не особо сложным - но пришлось переустанавливать GenSim несколько раз, чтобы подбить ответы к грейдеру. Это ужасно. Нужно внести все вариации ответов, получаемых с разным gensim в грейдер!

автор: Тенишев Т В

29 янв. 2021 г.

Этот курс местами сложнее предыдущего. Стоит повторить операции с матрицами, особенно про преобразования ими пространств и понятие собственных векторов. В последней неделе в качестве лектора выступает Константин Воронцов, очень хороший лектор. Но сама неделя тематического моделирования очень сложная, а задания, видно, устаревшие. В итоге местами складывается ощущение недоученности: вроде сделал задание и грейдер все принимает, но что по сути сделал - понятно не всегда

автор: Sergei B

4 авг. 2016 г.

Этому курсу поставлю "четверочку". Предыдущие два более интересные и продуманные. Третий курс получился каким-то слишком поверхностным. Сам материал очень нужный и полезный, но уж слишком "по верхам". Хочется, чтобы некоторые темы разбирали более глубоко и последовательно - от простого к сложному. Не всегда можно обойтись коротеньким видео - лучше записать больше уроков, и толку будет больше.

Но все равно я доволен. Пройдя три курса, я уже могу решать реальные задачи.

автор: Ирина К

28 дек. 2019 г.

Мне понравился этот курс (как и все предыдущие), но показалось очень неудобным, что на 4-й неделе в задании с использованием gensim ответы принимаются только с использованием устаревшей версии 2.3.0 для Python 2 (при этом в описании задания указано, что примутся с версией 3.5.0, но это не так): пришлось делать много танцев с бубнами вокруг переустановок разных версий, и это заняло неоправданно много времени. В целом курс очень хороший. Большое спасибо авторам.

автор: Голубев К О

26 авг. 2017 г.

В некоторых заданиях не хватает конкретики. В частности, задача по BigARTM из-за обновленной до 0.8.3 версии библиотеки работает несколько по-другому. Также хотелось бы больше задач по программированию по теме кластеризации. В конспектах пяти-восьми лекций, отображаемых на видео можно заметить ошибки/опечатки, вводящие в заблуждение. Хотелось бы, чтобы конспект был чище.

Тем не менее, курс отличный, дает очень много полезной информации. Ставлю твердую 4.

автор: Саркисов А Р

6 дек. 2019 г.

Необычайно непродуман последний блок про тематическое моделирование. Катавасия с версиями пакетов для сдачи задания - отдельный минус. Уже второй курс подряд все блоки, кроме последнего на 5/5, а последний портит всю картину. Материал подается в не самой удобной форме ( особенно, что касается нейронных сетей и баесовских методов из прошлого курса).

автор: Michael N

25 июня 2017 г.

Очень полезный курс. Хотя по сравнению с 1, 2 и 4 показался местами пустоватым.

Практические тесты мало помогают усвоить материал, т.к. зачастую их можно решить просто бездумно дургая соответствующие API

Однако теоретическая часть выше всяких похвал.

автор: Anatoly V

5 июля 2020 г.

Хотелось бы, чтобы авторы курса адаптировали некоторые его задания к третьей версии питона. К сожалению, сейчас очень много времени уходит на то, чтобы просто установить именно ту версию, которая была у автора, чтобы получить тот же ответ.

автор: Alexander A

25 мар. 2017 г.

Установка BigARTM меняется. Видео сделано по предыдущей версии. Вместо видео лучше бы была PDF с подробными инструкциями. В ролике приведён пример идеальной ситуации. Хотелось бы, чтобы в ролике разбирались типичные ошибки установки.

автор: Макеева Д В

15 июня 2018 г.

было бы здорово, если бы создатели курса перезаливали информацию по мере изменений состава пакетов. так, например, BigARTM уже совершенно не соответствует тому, что говорится в курсе: ни установка, ни пример работы с данным пакетом.

автор: Михаил И

5 дек. 2020 г.

Тематическое моделирование: из-за того что курс не обновляется уже три года, для сдачи заданий приходилось ставить окольными путями старые версии питона (2.7 не поддерживается с января 2020, 3.5 - с сентября 2020) и библиотек

автор: Konstantin C

2 апр. 2018 г.

Тематическое моделирование довольно сложно для понимания и требует много дополнительного времени на изучение. Возможно, стоит пересмотреть этот раздел: упростить изложение либо растянуть на две и более недели обучения.

автор: Сотников Г Д

11 июня 2017 г.

Курс, на мой взгляд, уступает предыдущим двум. В целом мне понравилось, однако некоторые шероховатости в его составлении испортили впечатление. Советую пройти и ознакомиться! Подталкивает к интересным размышлениям.

автор: Yur A

10 июня 2019 г.

всё чаще появляются задания, где ответ зависит от версии библиотек

(хотелось бы чтоб грейдер принимал аналогичные ответы по заданиям из актуальных версий библиотек, а не 1-3 летней давности)

автор: Лавренов Д В

9 дек. 2018 г.

Доволен первыми тремя неделями и категорически недоволен последней, 4й. Как минимум из-за отвратительного задания по программированию.

Тем не менее, большое спасибо за курс!

автор: Anvar A

25 мар. 2018 г.

первые недели курса были очень полезными. Последния неделя слишком сложная, чтобы ее дать в столь короткий срок. Никакой пользы не извлек из последней недели

автор: Evghenii G

28 нояб. 2017 г.

Очень доступное объяснение материала, кроме последней недели - её, как будто, взяли из другого курса. Было бы хорошо добавить побольше практических задач

автор: Vsevolod K

23 мая 2019 г.

Отличный и интересный курс. Только устарело задание на BigArtm. Не актуально видео, установить библиотеку самому не тривиально.

автор: Minasian V

21 июля 2017 г.

В целом- очень круто. Некоторые темы сложные , но интересные. На мой взгляд, последняя неделя проработана не очень хорошо.

автор: Tachanka R

19 июня 2016 г.

Отличный курс, но мало времени уделено кластеризации, хорошо бы иметь 2 недели вместо одной и больше заданий

автор: Олеся В

25 февр. 2020 г.

Курс интересный, но огорчает то, что на результат выполненных заданий влияет версия модулей и языка Python.

автор: Nikolay K

12 апр. 2018 г.

Сделайте что-нибудь с заданием по Тематическому Моделированию, чтобы оно не зависело от версий библиотек